

Implementing Configuration Management for
Software Testing Projects
This case study looks at a configuration management (CM)
process that you can use with any available CM tool to help
your software testers achieve better results on highly critical
software testing projects.
by Steve Boycan and Dr. Yuri Chernak

Configuration Management Fundamentals
This broad overview of configuration management (CM) takes
you through the functions of CM to establishing a software
baseline library to the CM process. It also includes a CM checklist,
case studies, and lessons learned.
by Software Technology Support Center

A Correlated Strategic Guide for Software Testing
The study in this article presents data to support using initial
test deficiencies in mid-production software tests to guide later
iterative testing to improve testing and expose problems earlier.
by Christopher L. Harlow and Dr. Santa Falcone

“But the Auditor Said We Need to ... ” Striking a
Balance Between Controls and Productivity
This article discusses the gap between audit-recommended
controls and those typically implemented by software project
teams. It lists commonly misunderstood audit recommendations
and provides an explanation of what auditors are really seeking.
by Greg Deller

Finding CM in CMMI
This article takes you through the Configuration Management
Key Process Area requirements in Capability Maturity Model
Integration step-by-step, offering advice on how to get started
and how to get better in this process area.
by Anne Mette Jonassen Hass

Configuration Configuration ManaManaggementement and and TTestest

2 CROSSTALK The Journal of Defense Software Engineering July 2005

4

10

18

22

26
Open Open FForumorum

Cover Design by
Kent Bingham.

3

9

15

16
31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Coming Events
Call For Articles

Web Sites

SSTC 2005 Conference Highlights

BackTalk

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (76 SMXG),
Ogden-Air Logistics Center (309 SMXG), and
Warner Robins-Air Logistics Center (402 SMXG)
Software Maintenance Groups (SMXG) are the offi-
cial co-sponsors of CROSSTALK, The Journal of
Defense Software Engineering. The SMXGs and the
Software Technology Support Center (STSC) are work-
ing jointly to encourage the engineering development of
software to improve the reliability, sustainability, and
responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 25.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820
(801) 775-5555

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Sponsor

The fundamental characteristic of a highly mature software organization is strict adher-
ence to documented processes. Certainly, no processes are more critical to any engineer-

ing endeavor’s success than well-defined and properly executed configuration management
and test processes. Few technical problems lead to more confusion, wasted effort, rework,
and overruns than poor configuration management practices. Item identification, version
control, traceability, change management, and configuration status accounting should be at
least as important to project leadership as tools, techniques, or technical solutions.

Equally important is testing. No matter how meticulously a configuration management effort
is developed and prescreening practices are followed, errors will still exist. A sound testing pro-
gram will reveal these errors. Testers often rely on configuration managers to assist in identifying
when and where the errors were inserted. I remember my first introduction to proper configura-
tion management many years ago and how the proverbial lightbulb came on for me. I was amazed
that such a basic and critical concept had escaped me to date. Years later, I am still amazed to see
this essential project management principle all too frequently ignored and overlooked.

This issue of CrossTalk addresses the value of configuration management and test and var-
ious implementation methods that I hope you will find helpful. Perhaps if your configuration man-
agement and test light bulb has not yet been lit, you might at least receive a little glow from your
reading time.

Processes Provide the Light of Success

Randy B. Hill
Ogden Air Logistics Center, Co-Sponsor

July 2005 www.stsc.hill.af.mil 3

From the Publisher

This month we focus on two very important software engineering disciplines: configura-
tion management (CM) and test. We are continually asked to feature articles on these two

disciplines that play an ever-increasing critical role in software development and sustainment.
We begin with Implementing Configuration Management for Software Testing Projects by Steve

Boycan and Dr. Yuri Chernak, who give a good example of how CM can aid testing proj-
ects with the necessary control of evolving testing artifacts. Next, we feature Configuration
Management Fundamentals by the Software Technology Support Center, a good reminder

of the basics of effective CM. In Finding CM in CMMI, Anne Mette Jonassen Hass shares her ideas
for companies facing the task of improving CM. In A Correlated Strategic Guide for Software Testing,
Christopher L. Harlow and Dr. Santa Falcone present an iterative testing strategy that has been
used in an actual large-scale military software acquisition. Its early testing results can be a guide to
later iterative testing in product development cycles. In “But the Auditor Said We Need to …” Striking
a Balance Between Controls and Productivity by Greg Deller, learn how project teams can better under-
stand auditors’ perspectives and recommendations. Finally, don’t miss the highlights on pages 16
and 17 from another successful Systems and Software Technology Conference.

I give a special thanks to the authors contributing to this month’s issue with their helpful
reminders and new insight into practicing effective CM and test.

New Ways to Implement CM and Testing

Tracy L. Stauder
Publisher

Note of Appreciation: We at CrossTalk extend our appreciation to Walt Lipke as he retired from government service at the
end of June. Throughout the years, Mr. Lipke has been a great supporter of CrossTalk via the articles he shared and his key
role in helping us secure funds until our new sponsors started their support. We will miss Mr. Lipke’s support in the government
sector, but look forward to more words of wisdom via future CrossTalk articles.

Configuration Management and Test

4 CROSSTALK The Journal of Defense Software Engineering July 2005

This case study discusses software test-
ing of use-case-driven projects by the

Application Scripting Group (ASG) of
the Securities Industry Automation
Corporation (SIAC). This SIAC group is
responsible for testing highly critical sys-
tems used for equity trading at the New
York Stock Exchange (NYSE). The high
criticality of SIAC systems requires that
the software testing process be well
planned and well managed. In addition, an
important management objective is the
continuous improvement of test process
performance that focuses on test effort
estimation, completeness of test designs
before test execution, traceability of test
designs to use cases, testing effectiveness
in finding defects, and test artifact main-
tainability and reusability from one project
cycle to another. This means that when a
given project has ended, a project team
has to analyze the actual process perform-
ance, perform causal analysis of process
deficiencies, and identify improvements
for the next project cycle.

To analyze test process performance,
testers typically review and analyze the
test process artifacts produced and used
during a project cycle. However, these
testing artifacts, along with their related
use cases, evolve during a project cycle
and can frequently have multiple versions
by project end. Hence, analysis of the
process performance from different per-
spectives requires that testers know
exactly which versions of artifacts they
used for different tasks. For example, to
analyze why the test effort estimates were
not sufficiently accurate, testers need the
initial versions of use cases, test analysis,
and test design specifications they used as
a basis for the effort estimation. In con-

trast, a causal analysis of software defects
missed in testing requires testers to have
the latest versions of use cases, test analy-
sis, and test design specifications used in
test execution.

As this case study illustrates, imple-
menting a configuration management
(CM) process provides an effective solu-
tion to this issue. It allows testers to cap-
ture the versions of their artifacts and the
related versions of use cases to produce
configuration baselines that can effective-
ly support the analysis of test process
performance after the project cycle has
ended. In addition, during a project cycle
this kind of CM process provides man-
agement with much better visibility into
and control over the test process. This
article describes how the ASG defined
their CM process and implemented it for
use-case-driven projects with IBM’s
Rational ClearCase tool. However, the
discussed CM process is generic and can
be implemented with any CM tool avail-
able on the market.

Defining the Test Process
Workflows
ASG’s implemented CM process was
intended to support the test process and
make it more efficient and better con-
trolled. Hence, before discussing the CM
process, we need to explain how we
defined the test process. The Rational
Unified Process (RUP) methodology [1]
defines the test process as one of its nine
disciplines. When testers deal with com-
plex use-case models, they can benefit
from further decomposing the RUP’s test
discipline into six separate workflows
shown in Figure 1 and defined in the fol-
lowing paragraphs. As we found on our
projects, such test process decomposition
can help software testers better cope with
functional complexity of software sys-
tems, and it can help management better
control a testing project.

Workflow 1:Test Analysis and
Planning
• Purpose: The objectives of this work-

flow are to define the test strategy and
testing objectives for each level of test-
ing, to analyze the use-case model to
determine the testing scope and prior-
ities, to provide test effort estimates, to
allocate project resources, to analyze
quality risks within the context of use-
case scenarios, and to develop test
ideas about what must be tested for
each use case.

• Key Resulting Artifacts: A test proj-
ect plan, system test plan, test
automation plan, test guidelines, and
test analysis specifications.

Workflow 2:Testware Design and
Maintenance
• Purpose: The objectives of this

workflow are to refine test ideas
about what must be tested for each
use case and provide details about
how to execute these tests. Also, this
workflow includes maintenance of
the existing test designs.

• Key Resulting Artifacts: Test analy-
sis, test design, and test case specifica-
tions (and/or test procedure specifi-
cations).

Workflow 3:Test Preparation
• Purpose: The objectives of this work-

flow are to set up a test environment
and a defect tracking system, generate
required test data, and develop test
supporting utilities (if required).

• Key Resulting Artifacts: Require-
ments for the test environment,
guidelines for test data generation and
management, the actual test environ-
ment and test data ready for use, and
test supporting utilities (if required).

Workflow 4:Test Execution and
Reporting
• Purpose: The objectives of this

Implementing Configuration Management
for Software Testing Projects©

Dr. Yuri Chernak
Valley Forge Consulting, Inc.

This case study presents the Application Scripting Group’s experience in implementing the configuration management (CM)
process for critical software testing projects. The article describes the company’s test process management objectives and how
implementing the CM process helped testers better achieve them. The authors define the types and purposes of the test process
milestones and the corresponding types of test model baselines, and describe the CM process implementation with the Rational
ClearCase tool.

Steve Boycan
Securities Industry Automation Corporation

© Copyright 2005 by the Securities Industry Automation
Corporation (SIAC). All rights reserved. Except as per-
mitted under the United States Copyright Act of 1976,
no part of this document may be reproduced or distrib-
uted in any form or by any means, or stored in a database
or retrieval system, without the prior written permission
of the Securities Industry Automation Corporation.

Implementing Configuration Management for Software Testing Projects

July 2005 www.stsc.hill.af.mil 5

workflow are to execute tests and
evaluate the quality of the software
product, find and report software
defects, and report the product’s test-
ing progress and status.

• Key Resulting Artifacts: Test analy-
sis and test design specifications
(enhanced, for example, with
exploratory test ideas), software defect
reports, test execution logs, and test
execution status reports.

Workflow 5:Test Process Evaluation
• Purpose: The objectives of this

workflow are to evaluate the test
process completeness, effectiveness,
and efficiency; perform a causal
analysis of test escapes1; and provide
recommendations for the test process
improvement.

• Key Resulting Artifacts: A test sum-
mary report, collected test process
and product metrics, and a process
improvement report (that can include
findings of the test escape causal
analysis and post-implementation
review).

Workflow 6: Regression Test
Automation
• Purpose: The objectives of this

workflow are to develop the test
automation architecture and automat-
ed regression scripts.

• Key Resulting Artifacts: Test
automation documentation and test
automation software, i.e., automated
regression scripts.

Workflows in the Project Cycle
These six test process workflows can, as
do all other RUP workflows, overlap in
time and iteratively evolve throughout the
project cycle (see Figure 1). For example,
ASG testers are expected to continue
exploring the software product during
test execution to develop additional test
ideas. Hence, the Test Analysis and
Planning and Testware Design and
Maintenance workflows largely overlap
with the Test Execution and Reporting
workflow for this reason.

We have already mentioned three
types of test documentation used on
ASG projects: test analysis, test design,
and test case specifications. Now, we
need to explain their purposes. The test
analysis specification is developed for
each use case. It provides analysis and
decomposition (slicing) of a given use
case and identifies its quality concerns to
be addressed in testing. The test design
document is also developed for each use
case. It captures a high-level testing logic

and rationale for test case selection for
each of the quality concerns identified in
the corresponding test analysis specifica-
tion. On ASG projects, testers primarily
use the test design specifications for
manual test execution. Lastly, the test
case specifications focus on the how to
execute testing details and are primarily
intended for the test automation person-
nel that use them as functional specifica-
tions for developing automated regres-
sion scripts.

As Figure 1 shows, the Regression
Test Automation workflow spans the
entire testing project. In our case, it is
managed as a separate project with its
own project plan and personnel possess-
ing specialized programming skills. The
artifacts of this workflow, i.e., test
automation documentation and regres-
sion scripts, are also considered a part of
the entire test model, which is a collec-
tion of all testing artifacts [1].

Defining the Configuration
Management Process
According to our CM process, test model
baselines are intended to support the test
process milestones. For this reason, there
is a one-to-one relationship between the
baselines and milestones as Figure 1
shows. This section discusses how we
defined the types of test project mile-
stones and their corresponding baselines.

Test Project Milestones
The term milestone sometimes has differ-
ent meanings on different projects.

According to Webster’s dictionary, mile-
stone is defined as “a significant point in
development.” In the case of ASG, a
project milestone means a significant
point in the test project life cycle where a
test team completes a critical task and
makes an important project decision.
Thus, ASG defined its project milestones
as follows:
• Test Planning (TP) Milestone. The

test team decides that the test project
is feasible and confirms the test proj-
ect plan and schedule. Testers make
this decision based on the completed
test analysis and test effort estimation.

• Test Design (TD) Milestone.
Testers decide that they have com-
pleted their test designs sufficiently
enough to start test execution.

• Test Execution (TE) Milestone.
The test team decides to stop testing.
Testers make this decision based on
evidence that they have met the
defined test exit criteria.

• Project-End (PE) Milestone. The
test team finishes the project cycle
and decides which of the test model
artifacts should be maintained and
reused in future project cycles.
As we already mentioned, the deci-

sions made at project milestones will be
evaluated later as part of the project per-
formance improvement task. Hence,
testers need to capture the versions of
the test model artifacts that supported
each of the project milestones during a
project cycle. An identified and fixed
configuration of these versions is called

Figure 1: Project Milestones and Related Baselines

Test Model Artifacts TP
Baseline

TD
Baseline

TE
Baseline

CU
Baseline

Component 1- Manual Testing Artifacts

Test Plan X X X

Test Analysis Specifications X X X X

Test Design Specifications X X X

Test Execution Logs X

Test Summary Report X

Baseline Status Reports X X X X

Component 2 - Automated Testing Artifacts

Automation Project Plan X X

Test Case Specifications X

Script Design Specifications X

Automation Infrastructure Designs X

Automated Regression Scripts X

Automation Infrastructure Application
Program Interfaces

X

Figure 2: Mapping the Test Model Artifacts to Their Baseline Types

TP

Baseline

TD

Baseline

TE

Baseline

CU

Baseline

Test Analysis
and Planning

Design Testware
and Maintenance

Test Execution
and Reporting

Test Process
Evaluation

Test Preparation

TP

Milestone
T

e
s

t
P

ro
c

e
s

s
 W

o
rk

fl
o

w
s

TD

Milestone

TE

Milestone

Regression Test
Automation

PE

Milestone

Acronyms for Milestones and Baselines:

TP: Test Planning TD: Test Design

TE: Test Execution PE: Project-End CU: Cumulative

Figure 1: Project Milestones and Related Baselines

Configuration Management and Test

6 CROSSTALK The Journal of Defense Software Engineering July 2005

baseline, and the next section discusses
how ASG defined the baseline types.

Test Model Baselines
ASG defined the following types of test
model baselines:
• TP Baseline. This baseline supports

the TP milestone. It captures the ver-
sion of a test plan that identifies use
cases in the scope of the testing proj-
ect. Also, it captures the versions of
test analysis specifications that testers
use as a basis for the test effort and
schedule estimation.

• TD Baseline. This baseline supports
the TD milestone. It provides evi-
dence that testers sufficiently com-
pleted test designs and can start test
execution. It captures the versions of
test analysis and test design specifica-
tions that have been completed based
on use cases and other available func-
tional specifications, and that have
been updated based on the peer-
review findings. In addition, this base-
line includes the latest version of a
test plan document.

• TE Baseline. This baseline supports
the TE milestone. It captures infor-
mation about how the system was
tested that testers deem necessary to
support their conclusion about the
software product’s quality. In particu-
lar, it includes the latest versions of
test analysis and test design specifica-
tions2 that have evolved during the
manual test execution. In addition, it
includes the test execution logs, both
manual and automated, and a test
summary report.

• Cumulative (CU) Baseline. This

baseline supports the PE milestone. It
captures test assets intended for
maintenance and reuse in subsequent
project cycles. This baseline has two
components: manual testing artifacts
and automated testing artifacts.
Unlike the other baseline types that
capture artifacts created and used
only in a given project cycle, the CU
baseline captures the cumulative set
of artifacts created both in the cur-
rent project cycle and in previous
cycles3.
Finally, different baseline types can be

composed of different test model arti-
facts. Table 1 shows the mapping
between the test artifacts and their corre-
sponding baseline types established for
the ASG projects.

Implementing the CM
Process
This section discusses the CM process
reference model, which was selected for
the ASG projects, and explains in detail
the CM process implementation.

A CM Process Reference Model
ASG implemented the CM process by
following the practices of the Software
Configuration Management Key Process
Area defined in the Software Engineering
Institute’s Capability Maturity Model®

(CMM®) framework [2]. To better man-
age the CM process implementation, we
further grouped the CMM practices by
four categories that compose the conven-
tional CM discipline [3]:
• Configuration Identification.
• Configuration Control.
• Configuration Status Accounting.
• Configuration Auditing.

The implementation of the CM
process began by producing a general

document for the department that
defined a CM policy, glossary of CM
terms, a standard CM process, and guide-
lines for its implementation. Then, based
on this document, each project team
developed its own CM plan document
that followed the Institute of Electrical
and Electronics Engineers (IEEE)
Std.828-1998 “IEEE Standard for
Software Configuration Management
Plans.” These CM plans were project-
specific and defined configuration items
and their naming conventions, the CM
repository structure, and the team mem-
ber roles and responsibilities. In particu-
lar, each project assigned the CM manag-
er role to one of the team members.
Finally, in implementing the CM process,
the project teams used the CM plans as a
basis for performing their CM activities.

Configuration Identification
When performing the configuration
identification activities, a project team
decides which test model artifacts must
be under configuration control, what
should be in a team-shared repository,
and how the repository should be struc-
tured. On use-case-driven projects, use-
case models can form complex structures
via the include/extend relationships [4].
In this case, different testers can be
assigned to produce test designs for relat-
ed use cases. Hence, it is important that
team members have quick access in the
course of a project to the latest versions
of each other’s test documentation.
Establishing a common CM repository of
the test model artifacts provides an effec-
tive solution to this issue.

ASG projects created their CM repos-
itories using IBM’s Rational ClearCase
tool. Each repository contained a set of
directories, each storing a particular type
of configuration item. For example, all
test design specifications, created by the
project team, were stored in the same
directory. Table 1 shows the artifacts of
the test model that we included in the
configuration control. As you can see,
they are logically divided into two com-
ponents: manual testing artifacts and
automated testing artifacts that, in turn,
include the automation design documen-
tation and software, i.e., automated
regression scripts.

ASG then defined a naming conven-
tion for all artifacts under configuration
control. Here is a file name example of a
test design specification that illustrates
our naming convention: TDS_DB_9.1
.doc. In this example, the file name is
composed of the following parts:
• Artifact type: TDS, meaning the arti-

Figure 1: Project Milestones and Related Baselines

Test Model Artifacts TP
Baseline

TD
Baseline

TE
Baseline

CU
Baseline

Component 1- Manual Testing Artifacts

Test Plan X X X

Test Analysis Specifications X X X X

Test Design Specifications X X X

Test Execution Logs X

Test Summary Report X

Baseline Status Reports X X X X

Component 2 - Automated Testing Artifacts

Automation Project Plan X X

Test Case Specifications X

Script Design Specifications X

Automation Infrastructure Designs X

Automated Regression Scripts X

Automation Infrastructure Application
Program Interfaces

X

Figure 2: Mapping the Test Model Artifacts to Their Baseline Types

T

Table 1: Mapping the Test Model Artifacts to Their Baseline Types

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Implementing Configuration Management for Software Testing Projects

July 2005 www.stsc.hill.af.mil 7

fact type test design specification.
• Project code: DB, meaning the proj-

ect name Display Book.
• Use Case ID number: 9.1.

By our convention, use cases and test
design specifications have a one-to-one
relationship. Hence, by including the use
case number in the test design file name,
ASG established an explicit traceability
from use cases to their corresponding
test designs.

Configuration Control
Performing the configuration control
activities involves controlling change
requests for configuration items, report-
ing and tracking problems, controlling
versions of configuration items, captur-
ing the change history each time a new
version is created, labeling artifacts of a
test model, and creating its baselines
associated with various project mile-
stones. A project manager is the primary
source of change requests. He/she
informs the testers when a new project
cycle begins, when they should start
working on test designs, which new auto-
mated scripts should be created, etc. In
addition, any project team member who
finds a problem with automated scripts
reports it via a defect tracking system.

The version control of test project
artifacts was handled by the CM tool that
allows the creation of new versions of a
given artifact and the capture of its
change history notes, the date/time when
the new version was created, the owner
of this version, and so on. For some of
the artifact types, ASG also created cus-
tom attributes in ClearCase4. For exam-
ple, for the test design specifications we
created attributes to capture the peer-
review date and the total number of test
cases for a given test design. This infor-
mation provided management with better
visibility into the state of evolving test
designs. Also, the number of test cases
was captured as part of the historical
project data for evaluating and improving
the test execution effort estimation.

Creating a test model baseline is a
three-step process. First, the CM manag-
er creates labels that correspond to the
project milestones discussed earlier.
Second, the artifact versions intended for
inclusion in a particular baseline are
labeled to correspond to the requested
baseline. For the TP and TD baselines,
the artifact owner is responsible for label-
ing versions of his/her own work prod-
ucts, as only the owner knows when an
artifact is ready for inclusion in either the
TP or TD baseline. In contrast, applying
labels at the end of test execution (TE

baseline) or at the end of the entire proj-
ect cycle (CU baseline) can be done for all
required artifacts at the same time.
Hence, in the case of TE and CU base-
lines, the CM manager can be responsible
for labeling the test model artifacts by
simply running a script. Finally, at the
third step the CM manager locks the label
and completes the baseline creation by
producing and publishing a baseline sta-
tus report. Following these steps allows
creating the required baselines and cap-
turing the versions of evolving test
model artifacts at different points in the
project life cycle.

Configuration Status Accounting
The main objective of the ASG status
accounting activities was to verify and
report to a team and its management that a
given baseline is compliant with its comple-

tion criteria. The CM manager was respon-
sible for this task. First, before creating
each baseline, this task required verifying
that the set of test model artifacts was
compliant with the baseline completion cri-
teria. Second, after a given baseline has
been created, the task required producing
and publishing a baseline status report. As
different test model baselines have differ-
ent purposes and different contents shown
in Table 1, ASG defined the completion
criteria for each of them as follows:

TP Baseline
The TP baseline (captures information used
for the test effort estimation) requires the fol-
lowing:

• A test plan has been reviewed and its
current version has been labeled.

• All required test analysis specifica-
tions exist in the CM repository.

• The latest versions of test analysis
specifications, used for the test effort
estimation, have been labeled and
refer to the corresponding use-case
document versions.

• A baseline status report has been cre-
ated and labeled.

TD Baseline
The TD baseline (captures test designs to be
used for test execution) requires the following:
• The latest version of the test plan

document has been labeled.
• All required test analysis and test

design specifications have been com-
pleted and peer-reviewed.

• The latest versions of test analysis
and test design specifications, ready
for test execution, have been labeled.

• All labeled versions of test analysis
and test design specifications refer to
the corresponding use-case versions.

• All labeled test design specifications
capture the peer-review date and the
total number of test cases.

• A baseline status report has been cre-
ated and labeled.

TE Baseline
The TE baseline (captures test artifacts actu-
ally used for test execution) requires the fol-
lowing:
• The latest version of the test plan

document has been labeled.
• The latest versions of test analysis

and test design specifications, actually
used for test execution, have been
labeled.

• All labeled versions of test analysis
and test design specifications refer to
the corresponding use-case versions.

• All labeled test design specifications
capture the total number of test cases
(that may have increased during test
execution).

• The test execution logs (manual and
automated) exist in the CM reposito-
ry and their latest versions have been
labeled.

• The test summary report exists in the
CM repository and its latest version
has been labeled.

• A baseline status report has been cre-
ated and labeled.

CU Baseline
The CU baseline (captures test artifacts
intended for reuse and maintenance) requires
the following:
• The latest versions of all selected test

“By following the
defined CM process,
our testing teams
established their

team-shared project
repositories, implemented
effective version control
of their artifacts, and

produced test
model baselines to
support different

project milestones.”

Configuration Management and Test

analysis specifications have been
labeled.

• The latest versions of all selected test
design specifications have been
labeled.

• The latest version of the test automa-
tion plan has been labeled.

• The latest versions of all selected test
case specifications have been labeled.

• The latest versions of test automation
documentation have been labeled.

• The latest versions of automated
scripts that have been accepted for
production have been labeled.

• Each accepted automated script cap-
tures the date it was accepted for pro-
duction and the name of a team
member who tested and accepted the
script.

• A baseline status report has been cre-
ated and labeled.

Configuration Auditing
Baseline auditing was an important part
of our CM process. Especially in the
beginning of the process implementation
a risk existed that some team members,
because of their lack of experience,
might not follow the process exactly as
defined. To ensure that the CM process is
properly followed, the ASG department
established a quality assurance (QA)
function. The QA personnel oversaw all
of the process improvement tasks in the
department, including the CM process
implementation and project baseline
audits.

Each testing project plan included
baseline audit tasks and assigned a QA
auditor as a project resource responsible
for the task. By having access to each
project team’s configuration repository,
the auditor could verify that each created
baseline was compliant with its defined
completion criteria. In addition, the audi-
tor was monitoring each project team’s
CM activities during a project cycle.
Thus, any deviations from the process
then could be identified and corrected
earlier in the project. The audit findings
were reported to project teams and dis-
cussed at their status meetings. Also, the
audit summary report was periodically
submitted to and reviewed by the depart-
ment head.

CM Process Implementation
Challenges
As is the case with any software process
improvement implementation, while
implementing our new CM process we
experienced a few challenges. These chal-
lenges can be described from two per-

spectives: (1) a general process improve-
ment perspective, and (2) a CM process-
specific perspective.

From the general process improve-
ment perspective, the success of any new
process implementation depends not
only on a good definition of the process
activities and procedures, but also on a
number of other (process supporting)
critical factors. Among them, the most
important are establishing process own-
ership and leadership, allocating neces-
sary resources, personnel training, man-
agement reviews, and process auditing.
Because of this dependency, we found
that the practices defined in the CMM as
the following common features [2] – com-
mitment to perform, ability to perform, measure-
ment and analysis, and verifying implementation
– are all equally important for successful
process implementation as the practices
in the main CMM category – activities to
perform.

From the CM process-specific per-
spective, before a project team starts
implementing a new CM process, it
should decide how to handle legacy test
model artifacts when moving them into
the new CM repository and creating an
initial project baseline. Likely, these arti-
facts will not be in compliance with the
defined CM process requirements. For
example, old test designs might not have
their peer review dates and/or references
to their corresponding use-case versions.
Likewise, old automated scripts might
not have their acceptance dates, etc.
Hence, a newly created baseline might
not satisfy its completion criteria when it
includes the legacy configuration items.

One way to resolve this issue is to
establish a convention defining how the
missing metadata can be substituted
while moving the legacy artifacts to the
new CM repository. This way a status
report – used to determine the baseline’s
completion – will not have blank values
for the metadata pertinent to the legacy
configuration items.

Conclusion
This case study discussed our experience
with implementing the CM process for
highly critical software testing projects. An
important management objective on our
projects is to establish a framework for (a)
effective control of testing projects, and
(b) continuous analysis and improvement
of test process performance. As we illus-
trated in this article, implementing the CM
process allows software testers to better
achieve this management objective. By fol-
lowing the defined CM process, our testing
teams established their team-shared proj-

ect repositories, implemented effective
version control of their artifacts, and pro-
duced test model baselines to support dif-
ferent project milestones. These baselines
captured configurations of versions of the
testing artifacts and their related use cases
that could later support the testers’ analy-
sis and improvement of test process per-
formance. Finally, the discussed CM
process is generic and can be implemented
with any available CM tool.u

References
1. Kroll, P., and P. Kruchten. The

Rational Unified Process Made Easy:
A Practitioner’s Guide to the Rational
Unified Process. Addison-Wesley
Professional, 2003.

2. Paulk, M., et al. The Capability
Maturity Model: Guidelines for
Improving the Software Process.
Addison-Wesley Professional, 1995.

3. Ben-Menachen, M. Software Config-
uration Management Guidebook.
McGraw-Hill Book Company, 1994.

4. Bittner, K., and I. Spence. Use Case
Modeling. Addison-Wesley, 2003.

Notes
1. From a system test perspective, test

escape is a software defect missed in
system testing and found in a later
stage, for example, during independ-
ent quality assurance testing or in pro-
duction.

2. Capturing the versions of test designs
at this point is critical to supporting at
a later time the causal analysis of test
escapes, especially those found in pro-
duction.

3. Regression Test Automation work-
flow can have its own intermediate
baselines; however, the versions of
these workflow deliverables must be
synchronized with other test model
artifacts at the end of a project cycle
(in the CU baseline)

4. This ClearCase feature – adding cus-
tom attributes to configuration items
– may not be available in some com-
mercial CM tools.

Acknowledgements
The authors are grateful to the
CrossTalk reviewers and Robin
Goldsmith at GoPro Management for
their feedback and comments that helped
us improve this article. Our special thanks
to the ASG testers who have implemented
and followed the CM process discussed in
this article, and helped us refine the
process and make it effective.

8 CROSSTALK The Journal of Defense Software Engineering July 2005

July 2005 www.stsc.hill.af.mil 9

About the Authors

Steve Boycan is man-
aging director for
Process Improvement
and Software Engineer-
ing and Testing Sup-
port at Securities In-

dustry Automation Corporation where
he manages the process improvement
program and various testing activities
for critical New York Stock Exchange
trading systems. He has been leading
software process improvement efforts
in the military, telecommunications,
and financial sectors for the last 10
years. As a certified Capability Maturity
Model® (CMM®) Lead Assessor, he has
performed a number of CMM-based
assessments and provided process
improvement guidance for various
information technology organizations.

Securities Industry Automation
Corporation
2 MetroTech CTR
Brooklyn, NY 11201
Phone: (212) 383-2963
Fax: (718) 923-6068
E-mail: sboycan@siac.com

Yuri Chernak, Ph.D.,
is the president and
principal consultant of
Valley Forge Consult-
ing, Inc. As a consult-
ant, Chernak has work-

ed for a number of major financial
firms in New York helping senior man-
agement improve their software testing
process. Currently, his research inter-
ests focus on use-case-driven testing
and test process assessment and
improvement. Chernak is a member of
the Institute of Electrical and Elec-
tronics Engineers (IEEE) Computer
Society. He has been a speaker at sever-
al international conferences and has
published papers on software testing in
the IEEE publications and other pro-
fessional journals. Chernak has a doc-
torate in computer science.

Valley Forge Consulting, Inc.
233 Cambridge Oaks ST
Park Ridge, NJ 07656
Phone: (201) 307-4802
Fax: (201) 307-4803
E-mail: ychernak@yahoo.com

Implementing Configuration Management for Software Testing Projects

August 15-17
International Conference on Information

Reuse and Integration: Knowledge
Acquisition and Management

Las Vegas, NV
www.cs.fiu.edu/IRI05

August 16-18
ICSEng ’05 International Conference on

Systems Engineering
Las Vegas, NV

www.icseng.info

August 22-26
Association for Computing Machinery

SIGCOMM 2005
Philadelphia, PA

www.acm.org/sigs/sigcomm/
sigcomm2005/index.html

September 12-16
Practical Software Quality and
Testing Conference 2005 North

Minneapolis, MN
www.psqtconference.com/

2005north

September 18-23
International Function Point Users

Group 1st Annual International Software
Measurement and Analysis Conference

New Orleans, LA
www.ifpug.org/conferences/

annual.htm

September 19-22
Better Software Conference

and Expo 2005
San Francisco, CA

www.sqe.com/bettersoftwareconf

September 26-27
PDF Conference and Expo

Washington, DC
www.pdfconference.com

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

10 CROSSTALK The Journal of Defense Software Engineering July 2005

Configuration Management Fundamentals
Software Technology Support Center

The U.S. Air Force’s Software Technology Support Center offers an updated and condensed version of the “Guidelines for
Successful Acquisition and Management of Software-Intensive Systems” (GSAM) on its Web site <www.stsc.hill.af.mil/
resources/tech_docs>. This article is taken from Chapter 9 “Configuration Management” of the GSAM (Ver. 4.0). We
are pleased that all editions have been so well received and that many individuals and programs have worked hard to imple-
ment the principles contained therein. The latest edition provides a usable desk reference that gives a brief but effective overview
of important software acquisition and development topics, provides checklists for rapid self-inspection, and provides pointers
to additional information on the topics covered.

Change is a constant feature of soft-
ware development. To eliminate

change is to remove the opportunities to
take advantage of lessons learned, to
incorporate advancing technology, and to
better accommodate a changing environ-
ment. Refusal to incorporate change can
mean system limitations and early obso-
lescence, which, in the world of technol-
ogy, can sign your system’s death certifi-
cate before it is born. However, change is
not universally benign and must be con-
trolled in its introduction to a project.

All projects change something. As a
project is executed, changes to the initial
project plan and products are a natural
occurrence. The following are common
sources of changes:
• Requirements. The longer the delivery

cycle, the more likely they will change.
• Changes in funding.
• Technology advancements.
• Solutions to problems.
• Scheduling constraints.
• Customer expectations.
• Serendipitous (unexpected) opportu-

nities for an improved system.
Some of these changes may appear as

options while others may be mandated
from above or by circumstance, as in the
loss of funding. While all progress is
accompanied by change, not all change is
indicative of progress. If not properly
handled, change can slip the schedule,
affect the quality, and even kill the project.
As a project draws closer to its comple-
tion, the impacts of change are more
severe [1]. Clearly, a mechanism is needed
to control change.

In software development and other
projects, proposed changes must be eval-

uated to determine their overall contribu-
tion to the project goals. Do they lead to
improvements or do they ultimately
impede or lower project quality? Even
those changes that are ultimately benefi-
cial must be controlled in their introduc-
tion and implementation.

Putting a bigger engine in a plane may
improve its capabilities, but it cannot be
implemented until the aircraft’s structure
has been found capable or been upgraded
to support the increased weight and
thrust.

Configuration management (CM) is
the process of controlling and document-
ing change to a developing system. It is
part of the overall change management
approach. As the size of an effort increas-
es, so does the necessity of implementing
effective CM. It allows large teams to
work together in a stable environment
while still providing the flexibility required
for creative work [2]. CM in a software
environment is an absolute necessity. CM
has three major purposes [1]:
1. Identify the configuration of the

product at various points in time.
2. Systematically control changes to the

configuration.
3. Maintain the integrity and traceability

of the configuration throughout the
product life cycle.
CM accomplishes these purposes by

answering and recording the answers to
the change questions: who, what, when,
and why, shown in Figure 1 [1]. Being able
to answer these questions is a sign of
effective CM.

Effective CM provides the following
essential benefits to a project:
1. Reduces confusion and establishes

order.
2. Organizes the activities necessary to

maintain product integrity.
3. Ensures correct product configura-

tions.
4. Limits legal liability by providing a

record of actions.
5. Reduces life-cycle costs.

6. Enables consistent conformance with
requirements.

7. Provides a stable working environ-
ment.

8. Enhances compliance with standards.
9. Enhances status accounting.

In short, CM can provide cost effec-
tive project insurance when properly
planned, organized, and implemented. It
must be integral to your overall project
execution, and to your charter/customer
agreement. Proposed changes must be
dealt with systematically, promptly, and
honestly [1]. If the CM process is unrea-
sonable or unresponsive, people will try to
circumvent the process, leading to chaos
and a loss of the benefits of true CM.

Process Description
While CM is a major element of a change
control program, it is such a multifaceted
discipline that it should be considered not
simply as another activity, but as a pro-
gram in and of itself. Establishing an
effective CM program requires an under-
standing of CM functions and of the
overall CM process.

Functions of Configuration
Management
CM is comprised of four primary func-
tions: identification, change control, sta-
tus accounting, and auditing. These are
shown in Figure 2, along with their sub-
functions. All CM activity falls within the
bounds of these functions.

Identification
This function identifies those items
whose configuration needs to be con-
trolled, usually consisting of hardware,
software, and documentation. These
items would probably include such things
as specifications, designs, data, docu-
ments, drawings, software code and exe-
cutables, components of the software
engineering environment (compilers, link-
ers, loaders, hardware environment, etc.),
and hardware components and assem-

Figure 1: Configuration Management Questions

Figure 1: Configuration Management Questions

Who makes changes?

What changes are made? When are changes made?

Why are changes made?

Configuration Management Fundamentals

July 2005 www.stsc.hill.af.mil 11

blies. Project plans and guiding docu-
ments should also be included, especially
the project requirements. A schema of
names and numbers is developed for
accurately identifying products and their
configuration or version level. This must
be done in accordance with project iden-
tification requirements. Finally, a baseline
configuration is established for all config-
uration items and systems. Any changes
to the baseline must be with the concur-
rence of the configuration control organ-
ization [2].

Although key components to be man-
aged are requirements and source code,
related documentation and data should be
identified and placed under CM control.
It is important to store and track all envi-
ronment information and support tools
used throughout the software life cycle to
ensure that the software can be repro-
duced. Table 1 lists examples of items
typically put under CM control.

Change Control
Configuration control establishes proce-
dures for proposing or requesting
changes, evaluating those changes for
desirability, obtaining authorization for
changes, publishing and tracking changes,
and implementing changes. This function
also identifies the people and organiza-
tions who have authority to make changes
at various levels (configuration item,
assembly, system, project, etc.,) and those
who make up the configuration control
board(s) (CCB). (According to IEEE
610.12 [3], a CCB is a group of people
responsible for evaluating and approving
or disapproving proposed changes to
configuration items, and for ensuring
implementation of approved changes.)

Additionally, various change criteria
are defined as guidelines for the control
organizations. Different types of configu-
ration items or different systems will
probably need different control proce-
dures and involve different people. For
example, software configuration control
has different needs and involves different
people than communications configura-
tion control and would probably require
different control rules and a different
control board [2]. Configuration change
control activities include the following:
• Defining the change process.
• Establishing change control policies

and procedures.
• Maintaining baselines.
• Processing changes.
• Developing change report forms.
• Controlling release of the product.
A generic software change process is
identified in Figure 3 (see next page).

Status Accounting
Status accounting is the documentation
function of CM. Its primary purpose is to
maintain formal records of established
configurations and make regular reports
of configuration status. These records
should accurately describe the product,
and are used to verify the configuration of
the system for testing, delivery, and other
activities. Status accounting also maintains
a history of change requests and authori-
zations, along with status of all approved
changes. This includes the answers to the
CM questions in Figure 1 [2].

Key information about the project
and configuration items can be communi-
cated to project members through status
accounting. Software engineers can see
what fixes or files were included in which
baseline. Project managers can track com-
pletion of problem reports and various
other maintenance activities. Minimal
reports to be completed include transac-
tion log, change log, and item delta report.
Other typically common reports include

resource usage, stock status (status of all
configuration items), changes in process,
and agreed-upon deviations [6].

Auditing
Effective CM requires regular evaluation
of the configuration. This is done
through the auditing function, where the
physical and functional configurations are
compared to the documented configura-
tion. The purpose of auditing is to main-
tain the integrity of the baseline and
release configurations for all controlled
products [2]. Auditing is accomplished via
both informal monitoring and formal
reviews.

Configuration auditing verifies that
the software product is built according to
the requirements, standards, or contractu-
al agreement. Test reports and documen-
tation are used to verify that the software
meets the stated requirements. The goal
of a configuration audit is to verify that all
software products have been produced,
correctly identified and described, andFigure 1: Configuration Management Questions

Items Under CM Control

System data files Source code modules

Requirements specifications System build files/scripts

Design specifications Interface specifications

Test plans Software architecture specifications

Test data sets Test procedures

User documentation Test results

Quality plans Software development plan

Compilers Configuration management plans

Debuggers Linkers and loaders

Shell scripts Operating systems

Other related support tools Third-party tools

Development procedures and standards [4] Procedure language descriptions

Table 1: Items Under CM Control

Who makes changes?

What changes are made? When are changes made?

Why are changes made?

Table 1: Items Under CM Control

Table 1: Items Under CM Control

Management

Figure 2: Major Functions of Configuration Management [2]

Data
Identification

Requirements

Identify
Configuration

Items
Identify

Acceptance
Requirements

Define
Baselines

Establish
Identification

Schema Identification

Change
Control

Status
Accounting

Auditing

Document Configuration Items,
Requirements, Identification

Scheme, Baselines

Establish
Change
Criteria

Establish Review
and Control

Organizations

Establish
Change Control

Procedures

Control Revisions to
Specifications,

Designs, Drawings,
Data, and Documents

Functional
Configuration

AuditsPhysical
Configuration

Audits

Formal
Qualification

Reviews

Maintain History
of Change
Approvals

Maintain
Change Status

Records

Maintain
Configuration

Verification Records

Maintain Product
Description

Records

Figure 2: Major Functions of Configuration Management [2]

Configuration Management and Test

12 CROSSTALK The Journal of Defense Software Engineering July 2005

that all change requests have been
resolved according to established CM
processes and procedures. Informal
audits are conducted at key phases of the
software life cycle.

There are two types of formal audits
that are conducted before the software is
delivered to the customer: Functional
Configuration Audit (FCA) and Physical
Configuration Audit (PCA). FCA verifies
that the software satisfies the software
requirements stated in the System

Requirements Specification and the
Interface Requirements Specification. In
other words, the FCA allows you to vali-
date the system against the requirements.
The PCA determines whether the design
and reference documents represent the
software that was built. Configuration
audit answers the questions, “Does the
system satisfy the requirements?” “Are all
changes incorporated in this version?”
Configuration audit activities include the
following:
• Defining audit schedule and proce-

dures.
• Identifying who will perform the

audits.
• Performing audits on established

baselines.
• Generating audit reports.

Establishing a Software
Baseline Library
In support of the above activities, a soft-
ware baseline library is established. The
library is the heart of the CM system. It
serves as the repository for the work
products created during the software life
cycle. Changes to baselines, and the
release of software products, are system-
atically controlled via the change control
and configuration auditing functions. The
software library provides the following:
• Supports multiple control levels of

Software Configuration Management
(SCM).

• Provides for the storage and retrieval
of configuration items or units.

• Provides for the sharing and transfer
of configuration items or units be-
tween control levels within the library.

• Provides for the storage and recovery
of archive versions of configuration
items or units.

• Helps to ensure correct creation of
products from the software baseline
library.

• Provides storage, update, and retrieval
of CM records.

• Supports production of CM reports.
• Provides for maintenance of library

structure [7].
In the past, libraries have been com-

posed of documentation on hard copy
and software on machine-readable media.
Today, with the advances in information
technology and standards that encourage
contractors to use automated processing
and electronic submittal techniques,
organizations are moving toward main-
taining all information on machine-read-
able media.

Configuration Management
Process
Understanding what CM is supposed to
accomplish is one thing. Putting it into
practice is another. As with most project
activities, CM begins with planning. With
a plan, configuration baselines can be
established. Following this initial configu-
ration identification, the cyclical configu-
ration control process is put into motion.
These three major CM implementation
activities are shown in Figure 4.

Planning
Planning begins by defining the CM
process and establishing procedures for
controlling and documenting change. A
crucial action is the designation of mem-
bers of the CCB. Members should be
chosen who are directly or indirectly
involved or affected by changes in config-
uration. For example, a software CCB
would obviously be populated with repre-
sentatives from different software teams,
but software affects many more aspects
of a project. There should also be repre-
sentatives from the hardware, test, sys-
tems, security, and quality groups as well
as representatives from project manage-
ment and possible other organizations.

Not all changes would be reviewed by
this august body. Changes occur at differ-
ent system levels and affect different por-
tions of the overall system. Many changes
will probably only affect a small subset of
the system and could therefore be
reviewed and approved by a smaller
group. Some sort of delineation of
change levels should be made during
planning to keep change decisions at the
proper level. While software CM is essen-

Software
Change

Software
Enhancements

Problems

Analyze
and

Assess Impact

Review
Board

Engineering
Change Proposal

Preparation

Control
Board

Evaluate
Engineering

Change
Proposal

Archive
Change

Incorporate
Change

Approve?Yes No

Supply
Feedback

to Originator

Verify
Change

END

Control, Document, and Audit Configuration

ate Proposed
Changes and

e/Disapprove

Track
Approved

Changes to
Closure

Update Baselines
and History –

Publish Reports

Audit – Compare
Actual With

Documented
Configuration

Plan CM Program

Define CM
Process

Identify Control
Board Members

Develop or
Procure CM Tools

Establish Baselines

Identify Items
to Control

Identify Baselines
Develop Schema

of Identifiers

Figure 3: Generic Change Process [5]

Software
Change

Software
Enhancements

Problems

Analyze
and

Assess Impact

Review
Board

Engineering
Change Proposal

Preparation

Control
Board

Evaluate
Engineering

Change
Proposal

Archive
Change

Incorporate
Change

Approve?Yes No

Supply
Feedback

to Originator

Verify
Change

END

Control, Document, and Audit Configuration

Evaluate Proposed
Changes and

Approve/Disapprove

Track
Approved

Changes to
Closure

Update Baselines
and History –

Publish Reports

Audit – Compare
Actual With

Documented
Configuration

Plan CM Program

Define CM
Process

Identify Control
Board Members

Develop or
Procure CM Tools

Establish Baselines

Identify Items
to Control

Identify Baselines
Develop Schema

of Identifiers

Figure 4: Configuration Management Implementation Process

tial, there may need to be other CCBs to
control change in other areas of the proj-
ect. Again, this is something that should
be worked out in the planning phase.

Various software tools exist that can
facilitate the CM process flow and main-
tain configuration history. Using a CM
software tool is highly recommended.
The temptation will be to choose a tool
because it looks good in a demonstration
and then build the CM process around it.
The process should be defined first, and
then a tool chosen to facilitate the
process.

Establishing Baselines
Once the CM program exists on paper, it
must be determined just what configura-
tions it will control. The second major
step of implementing effective CM is
identifying what items, assemblies, code,
data, documents, systems, etc. will fall
under configuration control. With the
configuration items identified, the base-
line configuration must be identified for
each item. For items that already exist, it
may prove to be nothing more than exam-
ining or reviewing and then documenting.
For those items that have not been devel-
oped yet, their configuration exists in the
requirements database or in the project
plans. Until they come into physical or
software reality, changes to their configu-
ration will consist only of changes to the
requirements or plans.

Another essential activity in this step
is developing a schema of numbers, let-
ters, words, etc. to accurately describe the
configuration revision, or version, for
each general type of configuration item.
There may be project requirements that
dictate some type of nomenclature, or
there may be an organizational or indus-
try standard that can be used as the basis
for configuration identification.

Controlling, Documenting, and Auditing
When the baselines have been established,
the challenge becomes one of keeping the
actual and documented configurations
identical. Additionally, these baselines
must conform to the configuration speci-
fied in the project requirements. This is an
iterative process consisting of the four
steps shown in Figure 4.

All changes to the configuration are
reviewed and evaluated by the appropriate
configuration control representatives
specified in the CM plan. The change is
either approved or disapproved. Both
approvals and disapprovals are document-
ed in the CM history. Approved changes
are published and tracked or monitored
until they are implemented. The appropri-

ate configuration baseline is then updated,
along with all other applicable documents,
and reports are published and sent to
affected organizations indicating the
changes that have occurred. At selected
time intervals and whenever there appears
to be a need, products and records are
audited to ensure the following:
• The actual configuration matches the

documented configuration.
• The configuration is in conformance

with project requirements.
• Records of all change activity are

complete and up-to-date.
The controlling, documenting, auditing
cycle is repeated throughout the project
until its completion.

Updating the CM Process
It is unlikely a perfect CM program will be
assembled during the initial planning
stage. There will be learning and changes
in the program that indicate a need for
adjustments in the CM process. These
may be any mixture of modifications to
make it more efficient, responsive, or
accurate. When changes in the CM
process are needed, consider them as you
would any other changes, get the approval
of all participating organizations, and
implement them as appropriate. It would
be ironic indeed to have an unchanging
change process.

Configuration Management
Checklist
This checklist is provided to assist you in
establishing an effective CM program. If
you cannot answer a question affirmative-
ly, you should carefully examine the situa-
tion and take appropriate action.

CM Planning
q Have you planned and documented a

configuration management process?
q Have you identified CCB members for

each needed control board?
q Has CM software been chosen to

facilitate your CM process?

Establishing Baselines
q Have all configuration items been

identified?
q Have baselines been established for all

configuration items?
q Has a descriptive schema been devel-

oped to accurately identify configura-
tion items and changes to their config-
uration?

Controlling, Documenting, and
Auditing
q Is there a formal process for docu-

menting and submitting proposed
changes?

q Is the CCB active and responsible in
evaluating and approving changes?

q Is there a higher authority to appeal to
when the CCB gets hung, and cannot
come to a consensus?

q Are all changes tracked until they are
fully implemented?

q Are all changes fully documented in
the baseline documents and change
histories?

q Are regular reports and configuration
updates published and distributed to
interested organizations?

q Are regular audits and reviews per-
formed to evaluate configuration
integrity?

q Are configuration errors dealt with in
an efficient and timely manner?

Updating the Process
q Is the CM program itself – its effi-

ciency, responsiveness, and accuracy –
evaluated regularly?

q Is the CM program modified to
include recommended improvements
when needed?

Case Studies
The following case studies outline specif-
ic instances where organizations success-
fully implemented software CM (SCM).

Selecting a CM Tool
At a large aerospace corporation in the
Southeast, the CM manager turned in a
recommendation to purchase a CM auto-
mated tool that would satisfy all require-
ments identified by the CM groups.
Management delayed acting on the rec-
ommendation to give the other engineer-
ing departments time to review the rec-
ommended tool.

In the end, the recommendation to
purchase the tool was cancelled. It was
felt that while the tool did support the
CM organization, it did not adequately
address other developmental considera-
tions that the engineering ranks felt were
important. Sometime later a different tool
was purchased, one that satisfied all the
major requirements of SCM, the software
developers, SQA, test, integration, and
management organizations.

Overcoming Barriers to SCM
During a recent visit to a private-sector
corporation (i.e., they did not deal with
government contracts) in New England,
it was discovered that the developer’s
major concern about implementing CM
activities was all the restrictions they would
have to deal with. They had been led to

Configuration Management Fundamentals

July 2005 www.stsc.hill.af.mil 13

Configuration Management and Test

14 CROSSTALK The Journal of Defense Software Engineering July 2005

believe that CM meant formal controls,
restricted access, limited ability to apply
creative solutions, and so on. When it was
suggested that data can transition to for-
mally controlled baselines through a series
of informal control steps, and that CM
did not mean a lockdown and bottleneck,
they became eager to be involved. After a
number of meetings, a phased approach
to formal CM allowed for the placement
of informal controls and data gathering
which led to baselined items. Everyone
was pleased with the process.

The developers soon realized they
could work together with CM as a team to
solve problems rather than as two sepa-
rate organizations with their own con-
cerns and desired solutions. More impor-
tantly, perhaps, the CM group learned
that when they got out of their corner
office and out onto the engineering floor
(being support and service oriented) they
quickly became an integral part of the
engineering and development process
and team.

Implementing CM With an
Electronic Database
A team of 35 to 40 developers was devel-
oping six computer software configura-
tion items, which all had two or more cus-
tomer variants as well as maintenance
variants. The operating system was Unix,
and the development languages were
Ada, C, and C++. Implementing classical
CM in this type of environment would
normally require three to four CM practi-
tioners to handle all the code and docu-
ment manipulations. The team chose
instead to implement a mostly developer-
executed CM system called Effective SCM.
They implemented a Software Query
Language-compliant, database driven,
process oriented CM system, which sup-
ports a rule-based, closed-loop, change-
package approach to development.

Daily interaction with the CM system
by the developers provided 100 percent
tracking and status accounting of every-
thing that happened to any file in the sys-
tems without the need for intrusion or
interference by CM practitioners. The CM
practitioners maintained the process
model and performed the configured
builds. As a result, CM support to this
team was less than one person, and in fact
was in the order of 80-120 hours per
month instead of the more than 400
hours per month that a classical approach
would have used.

The electronic database created by the
engineers completely documented the
execution of their software development
plan. It also tracked the history of every

file used in the system including change
documents, baselines, and releases for
each file. Note that rule-based, closed-
loop change control electronically imple-
mented business rules that prevented the
creation of a new version without author-
ization and prevented closure of a change
request that had not been implemented.

A change-package approach supports
electronic creation of new baselines by
application of changes to a previous base-
line. The tool electronically adds, replaces,
or removes files that are related to the list
of changes being made and is very effec-
tive in tracking development activities.
(Note that Effective SCM is an unregistered
trademark of BOBEV Consulting. For a
complete description, see “Effective
Software Configuration Management” in
CrossTalk February 1998.)

Lessons Learned
The following are just a sample of the many
lessons that have been learned from apply-
ing CM and its associated technologies.

The Importance of Planning
With only a few exceptions, if you look at
any of the CM standards, manuals, guides,
books, etc., you will likely find that CM
has four major functions: (1) identifica-
tion, (2) change control, (3) status
accounting, and (4) auditing. In nearly
every case, planning is left out. Yet, SCM
is using much more complex equipment
to establish and maintain complex envi-
ronments, multiple baselines, multiple
environments on multiple platforms, etc.
Like everyone else, CM has to do all that
faster, cheaper, smarter, and better than
before. Planning has become more
important than ever.

Planning cannot be interpreted as
meaning a CM Plan has been written. That is
certainly a good start, but much more is
needed than just a document that explains
SCM’s roles and responsibilities. CM plan-
ning activities must also include, to name
only a few, such things as the following:
• Metrics. How long? How many arti-

facts? When were they created? When
were they updated? Where are they?

• Skill Mix. What is needed and who
has it or who can get it?

• Infrastructure. Who is doing what,
where, when, and how?

• Contingencies. If this happens, then
what?

• Effort Tracking. Manpower levels.
• Subcontracts. Who has responsibility

and authority?
• Resources. Budget, tool licenses,

training, and head count.
• Matrix Management. Decentralized

work force.
• Control Transitions. Informal to

formal to field.
• Records Retention. What gets kept

where and for how long?
• Control. Who controls what and how

do they do it?
• Process. Standardized procedures for

repeatability.

Things to Remember
The most significant lessons are the fol-
lowing:
• Get an inside person on your side – an

internal champion. They will become
an evangelist for your solution to their
co-workers.

• Get management buy-in and sponsor-
ship. Management must really want it,
not just go along with it. All levels of
management need to support SCM.
While implementing SCM, keep a
focus on management sponsorship at
all times.

• Maintain a sense of humor.
• Be flexible and sensitive to corporate

culture.
• Seek out the early success.
• Do not use a critical project as pilot.
• Use a systems approach: Where am I?

Where do I want to go? How am I
going to get there?

• Success is more likely with lots of
preparation, focus on CM and devel-
oper needs, breadth of participation,
online access to sample process and
planning templates, and standard ter-
minology.

• Keep it simple. If it is too complex, or
gets in the way, it will not get used.

• Communicate, communicate, commu-
nicate.u

References
1. Software Technology Support Center.

“Life Cycle Software Project Manage-
ment.” STSC Seminar, 9 Oct. 2001.

2. Software Program Managers Net-
work. “Little Book of Configuration
Management.” Software Program
Managers Network, Nov. 1998 <www.
spmn.com/products.html>.

3. Institute of Electrical and Electronics
Engineers. “Standard 610.12-1990
IEEE Standard Glossary of Software
Engineering Terminology.” New
York: IEEE, 1990.

4. Kasse, Tim. Software Configuration
Management for Project Leaders.
Proc. of Software Technology Con-
ference, Apr. 1997.

5. Berblack, Ronald H. Software Config-
uration Management. John Wiley &
Sons, New York, 1992.

6. Ben-Menachem, Mordechai. Software
Configuration Management Guide-
book. McGraw-Hill, 1994.

7. Olson, Timothy G., et al. “A Software
Process Framework for the SEI Capa-
bility Maturity Model: Repeatable Lev-
el.” CMU/SEI-93-TR-7. Pittsburgh,
PA: Software Engineering Institute,
1993.

July 2005 www.stsc.hill.af.mil 15

About the Author

Configuration Management Fundamentals

The Software Technology Support
Center (STSC) produced the “Guide-
lines for Successful Acquisition and
Management of Software-Intensive
Systems.” Visit the STSC Web site at
<www.stsc.hill.af.mil/resources/tech_
docs> to access all 17 chapters of this
document. The STSC is dedicated to
helping the Air Force and other U.S. gov-
ernment organizations improve their
capability to buy and build software bet-
ter. The STSC provides hands-on assis-
tance in adopting effective technologies
for software-intensive systems. The STSC
helps organizations identify, evaluate, and
adopt technologies that improve software
product quality, production efficiency,
and predictability. Technology is used in
its broadest sense to include processes,

methods, techniques, and tools that
enhance human capability. The STSC
offers consulting services for software
process improvement, software technolo-
gy adoption, and software technology
evaluation, including the Capability
Maturity Model® IntegrationSM, software
acquisition, project management, risk
management, cost and schedule estima-
tion, configuration management, soft-
ware measurement, and more.

Software Technology
Support Center
6022 Fir AVE BLDG 1238
Hill AFB, UT 84056-5820
Phone: (801) 586-0154
DSN: 586-0154
E-mail: stsc.consulting@hill.af.mil

Configuration Management
Yellow Pages
www.cmcrossroads.com/yp/index.php?oldpage=
configuration _management.html
The Configuration Management Yellow Pages is a categorized
database of links to configuration management and develop-
ment resources. The site, originally created by Andre van der
Hoek, is now hosted at CM Crossroads in a format that allows
any member to add or update a new resource and to review and
rate existing ones.

Test and Measurement World
www.tmworld.com
This is the online version of Test & Measurement World and Test
& Measurement Europe, which cover the electronics testing
industry, providing how-to information for engineers who test,
measure, and inspect electronic devices, components, and sys-
tems.

Software Configuration Management
www.sei.cmu.edu/legacy/scm
This is the Software Configuration Management area of the
Software Engineering Institute’s (SEI) Web site. This area is
intended to share the configuration management research done
by the SEI between 1988 and 1994 and to provide pointers to
other useful sources of information on Software Configuration
Management.

Software Testing Institute
www.softwaretestinginstitute.com
The Software Testing Institute (STI) provides industry publica-
tions, research, and online services, including a software testing
discussion forum, the STI Resource Guide, the Automated
Testing Handbook, STI Buyer’s Guide, and more.

Data Interchange Standards Association
http://www.disa.org
Home to numerous organizations developing e-business stan-
dards, the Data Interchange Standards Association helps indi-
viduals and the business community improve business process-
es, reduce costs, increase productivity, and take advantage of
new opportunities.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is an Air Force organ-
ization established to help other U.S. government organizations
identify, evaluate, and adopt technologies to improve the quali-
ty of their software products, efficiency in producing them, and
to accurately predict the cost and schedule of their delivery.

Institute of Electrical and Electronics
Engineers
www.ieee.org
The IEEE promotes the engineering process of creating, devel-
oping, integrating, sharing, and applying knowledge about elec-
trical and information technologies and sciences. IEEE provides
technical publications, conferences, career development assis-
tance, financial services and more.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM): A
Foundation for Objective Project Management was developed
to meet today's software and system technical and management
challenges. The Department of Defense and the U.S. Army
sponsor PSM. The goal of the project is to provide project man-
agers with the objective information needed to successfully meet
cost, schedule, and technical objectives on programs.

WEB SITES

CrossTalk did not have room to
cover the fundamentals of testing in this
month’s theme section, “Configuration
Management and Test.” The Guidelines
for Successful Acquisition and Manage-
ment of Software-Intensive Systems
(GSAM) is also a good source for infor-
mation on the basics of testing and
many other software topics. For more
information on test, see Chapter 12 of
GSAM Ver.. 4.0 at <http://www.stsc.
hill.af.mil/resources/tech_docs/gsam4.
html>.

The theme for this year’s Systems and Software Technology
Conference (SSTC) was “Capabilities: Building, Protecting, and

Deploying.” Once again the theme targeted the SSTC vision to be
the Department of
Defense’s premier forum
to enhance attendees’
professional skills and
knowledge of systems
and software technolo-
gies and policies, enabling
them to improve the
capabilities they provide
to the warfighter. This
year’s conference includ-
ed more than 180 events
to choose from, includ-
ing general sessions,
speaker luncheons, plena-
ry sessions, presentation
tracks, and exhibitor
tracks.

As the theme sug-
gested, this year’s SSTC
highlighted the technolo-
gies, processes, and practices to deliver enhanced capabilities to the
U.S. military. Many of the latest technologies and human ingenu-
ities that make these challenges an opportunity were presented at
the 2005 SSTC from April 18-21 in Salt Lake City. Attendees heard

from defense and industry leaders, learning from more than 178
expert presentations in topics ranging from acquisition to net cen-
tricity to Web service protocols. In addition, they evaluated new

and longtime products
from more than 210
exhibitors, and net-
worked among the 1,900
attendees focused on
similar issues, problems,
and solutions.

The SSTC is one of
the largest co-sponsored
events for U.S. defense-
related software tech-
nologies, policies, and
practices. It is co-spon-
sored by the U.S. Army,
Marine Corps, Navy, Air
Force, Defense Infor-
mation Systems Agency,
Department of the
Navy, and Utah State
University Extension.
The co-sponsors have

already started planning SSTC 2006, which is scheduled for May
1-4 in Salt Lake City.u

Photos by Randy Schreifels of the Software Technology Support Center.

16 CROSSTALK The Journal of Defense Software Engineering July 2005

17th Annual Systems and Software Technology
Conference Focused on Defense Capabilities

Below: Again this year, winners of
Government’s Top 5 Programs w
their awards. Articles about these winning pro
will appear in September’s

Below: To encourage networking among attendees
and exhibitors at SSTC, the brunches, refreshment
break, and coffee and dessert break were hosted in
the trade show among the exhibitors.

Above: An Industry Panel session included (from
left) Dr. Jim Kane, president and CEO, Systems
and Software Consortium, Inc.; Lou Von Thayer,
president, General Dynamics Advanced Infor-
mation Systems; Dr. David F. McQueeney, chief
technology officer, IBM Federal; Grover W. Hall,
v.p., Technical Operations, Lockheed Martin Space
Systems Co.; Paul Cofoni, president, CSC Federal
Sector; and Bob Stow, v.p., Engineering and
Technology, BAE SYSTEMS, North America.

Gen. John W. Handy, commander, U.S.
Transportation Command, and commander,
Air Mobility Command, U.S. Air Force,
addressed attendees at Thursday’s Plenary
Session Speaker Brunch about the importance
of software and technology in delivering needed
supplies to troops in the battlefield.

The Co-Sponsor Panel session included (from
left) Donald Reiter, Office of CIO, Depart-
ment of the Navy; John M. Gilligan, CIO,
U.S. Air Force; Maj. Gen. Conrad Ponder, Jr.,
director of Chief Integration Office G-6, U.S.
Army; Rebecca Harris, director, GIG ESE;
and moderated by David Mihelcic, DISA CTO.

July 2005 www.stsc.hill.af.mil 17

Brig. Gen. Robert H. McMahon, director of Maintenance, Ogden Air Logistics Center, Hill Air Force Base, Utah, talks with Ken Wilks of the 309 SMXG,
Hill AFB, during the SSTC trade show that featured 210 exhibitors.

 winners of the 2004 U.S.
r grams were presented with
bout these winning programs
r’s CrossTalk.

Below: Ellen Gottesdiener, EBG Consulting, Inc.
was one of 178 presenters at the SSTC during the
four-day conference.

Above: Speaking at the Opening General Session at
SSTC were (from left) Maj. Kurt Warner, XVIII
Airborne Corps and the 82nd Airborne Division;
Priscilla E. Guthrie, chief information officer,
Department of Defense; and Brig. Gen. Robert H.
McMahon, Ogden Air Logistics Center, Hill Air
Force Base, Utah.

Information technology advances have
equipped the U.S. military with an

extraordinary arsenal of weaponry and
supporting materiel. To keep the arsenal
current, the Department of Defense
(DoD) modified its acquisition strategy
to reflect the iterative nature of informa-
tion technology (IT) development. Both
public- and private-sector large-scale
software-intensive acquisitions use itera-
tive strategies to conduct the try-before-you-
buy testing of these purchases. This arti-
cle briefly reviews literature on software
testing and describes an iterative test
strategy used in an actual large-scale mil-
itary software acquisition.

The Timing of Software
Testing
In the past, a series of increasingly strin-
gent development tests controlled quality
and guided DoD large-scale customized
IT acquisitions through the procurement
process. Right before acquisition fielding,
an operationally realistic test evaluated
the product’s functional effectiveness
within its intended environment [1].
Thus, multimillion-dollar purchase deci-
sions depended largely upon successful
operational tests at the end of produc-
tion.

In the United States in 2002, the
National Institute of Standards and
Technology calculated the annual cost of
these operational test failures in the U.S.
public and private sectors at $59.5 billion
[2]. An independent study found that
more than half of IT acquisitions dou-
bled their initial budget and schedule pro-
jections, the average acquisition provided
only 61 percent of the desired function-
ality, and one-third of software-intensive

projects were ultimately cancelled [3].
In IT acquisitions, the desired soft-

ware end-product is seldom clearly
defined [4]. The identification of require-
ments and the development of the soft-
ware to fulfill them are progressive and
often become intertwined, fueling a spiral
in which unanticipated requirements
emerge [5]. Government agencies have
referred to this process as evolutionary
acquisition and spiral development. Their
civilian counterparts use the phrases agile
development and extreme programming [6].

In the recent past, government testing
was insensitive to this process of soft-
ware development. In 2000, the U.S.
General Accounting Office (GAO)
harshly criticized DoD evaluation
methodologies and concluded that late
operational test failures consistently
plagued DoD purchases, particularly
software-intensive systems [7].
Accordingly, the GAO denounced the
traditional practice of employing testing
as a watershed event in sole support of field-
ing decisions. The failure of traditional
practices combined with the technologi-
cal revolution led directly to the develop-
ment of alternative test strategies, includ-
ing the method described in this article.

After studying government and pri-
vate practices, the GAO concluded that
the most effective method of exposing
deficiencies was iterative operational test-
ing. GAO further recommended the phi-
losophy developed by AT&T: Break it big
early [7]. According to AT&T, the earlier a
problem is discovered, the easier and less
expensive it is to fix, making software
development more cost-effective. Other
benefits include encouraging technologi-
cal exploration and advancement, con-
trolling risk [8], exposing unanticipated

requirements, and enabling their eventual
fulfillment.

Spurred by success, incremental test-
ing has become the industry standard for
software development projects. For
example, during the acquisition of the
Theater Battle Management Core System,
evaluators successfully mitigated risk by
operationally testing each basic system
component prior to fielding. The test
team also observed that the incremental
strategy facilitated requirements develop-
ment as operators became increasingly
familiar with the system [9]. The DoD
employed the strategy with several pro-
grams, significantly improving its acquisi-
tion and testing practices.

In addition to incremental testing,
there is also near unanimous agreement
about using operationally realistic testing
early in the development cycle. Past and
present DoD Operational Test Agency
leaders assert that early operational tests
streamline the production process,
improve requirements definition, and
provide valuable feedback [10, 11]. The
Global Command and Control System
test team, one of the first DoD programs
to effectively use it, found that early oper-
ational testing increased operator system
familiarity, which, in turn, increased the
number of deficiencies exposed during
testing [12].

In March 2002, the Giga Information
Group estimated that two-thirds of pri-
vate-sector software projects would
employ agile development within the next
two years. Using terms nearly identical to
those in the government lexicon, the
group identified these projects as those
that are divided into smaller phases and
require more frequent testing [6].
According to the prevailing opinion in

A Correlated Strategic Guide for Software Testing

Dr. Santa Falcone
University of New Mexico

Due to the complexity of software development, completed programs are rarely ever flawless. Instead, they exist in a state of
constant refinement. As a result, large-scale customized software programs are routinely purchased and employed while still
experiencing significant problems. Because of the programs’ scale, these problems cost public- and private-sector organizations
billions of dollars each year in productivity losses and repair expenses. In the study in this article, test and field data from a
large-scale software development project were analyzed using Chi-square goodness-of-fit tests, p-tests, and binary logit regres-
sion. The results of this series of calculations support using initial test deficiencies in mid-production software tests to guide
later iterative testing to increase deficiency exposure. When used during software development, this strategic test guide is expect-
ed to improve testing, expose problems earlier, help lead to higher quality end-products, and ultimately reduce the large losses
organizations experience due to customized software defects.

18 CROSSTALK The Journal of Defense Software Engineering July 2005

Christopher L. Harlow
The George Washington University Law School

A Correlated Strategic Guide for Software Testing

July 2005 www.stsc.hill.af.mil 19

the public and private sectors, the best
response to the challenges of IT testing
is incremental operationally oriented
evaluations beginning in the early stages
of system development.

Early and Continuous
Software Testing
While the community has unanimously
embraced the need for earlier testing,
there is no consensus on how to conduct
early testing. Experts have proposed
merging developmental and operational
tests, instituting sustained independent
operational testing, using Bayesian hierar-
chical models [13], and replacing opera-
tional testing with mathematical models.
In addition, some argue that those who
will actually operate the completed sys-
tem should be active observers during
early developmental tests [3].

Ideally, involving primary users in
early testing expedites identification, pri-
oritization, and resolution of exposed
deficiencies, and results in lower costs
due to reduced operational testing [4].
This modified early testing with primary
users still culminates in a final operational
test. Thus, while using operators as
testers and separating large-scale soft-
ware acquisitions into incremental seg-
ments conform to the new paradigm, this
modified testing also retains the tradi-
tional concept of a final operational test
of the whole system.

Several experts eschew the implicit
requirement for physical testing and sug-
gest the utilization of risk assessment
models. Thompson proposes four strate-
gies ranging from the traditional produc-
tion model to various levels of opera-
tionally realistic testing, determined by a
variety of statistical inputs [14].
Expanding on Thompson’s proposal,
Arnold’s mathematical model would
effectively eliminate the need for detailed
testing of specific aspects of a potential
acquisition, ostensibly saving substantial
resources [15]. While the substitution of
mathematical modeling for testing is not
entirely accepted within the community,
proponents of mathematical modeling
assert that accurate models can be built.
Systematic refinement of mathematical
models is anticipated to improve their
predictive abilities [16].

The model or strategy proposed in
this article employs Thompson’s idea of
using statistical data in testing. However,
the use of statistical data here will identi-
fy specific test activities, not just test lev-
els. It also will provide a guide for the
iterative incremental testing process

rather than an outright replacement of
test activities.

Testing Using Correlation
The DoD commissioned a study in May
2000 to evaluate the accuracy of opera-
tional tests by comparing test results of
11 systems to wartime field data [17]. The
limitations of this study were as follows:
Low-level task-based test data was com-
pared with strategic-level operational
data; a standardized deficiency tracking
method before and after fielding was not
used; all 11 systems had been significant-
ly altered after testing and many of the
modifications were not documented; and,
finally, there was an extremely high
turnover rate of test personnel. Turnover
is not isolated to the military: Civilian test
teams often encounter turnover rates as
high as 80 percent in test periods only a
few months in length [18]. To credibly
compare data from one iterative test to
another, the identification of test and
field deficiencies should be standardized
and the only substantive system changes
should be fixes to deficiencies exposed
during official testing.

The closest approximation to this
article’s correlation model was the incre-
mental development and testing of IBM’s
integrated results database for the 2000
Summer Olympics. IBM utilized standard
Orthogonal Defect Classification to cate-
gorize system defects along an x-y graph,
revealing defect similarities and trends
the IBM team termed triggers. The IBM
team assumed that a high trigger inci-
dence rate revealed an area of weak code
and “used the insight to guide test teams
toward more effective defect discovery”
[18]. The IBM trigger metrics represent
an initial attempt by the software industry
to relate test data to future performance
in a manner aimed at improving the pro-
duction process.

As noted earlier, the specific require-
ments of large-scale software programs
are unclear at the inception of the design
and production process. The correlation
of iterative test results is proposed here
to enable discovery, more specific clarifi-
cation, and fulfill end-user needs during
production and testing. This approach
also helps manage the eight factors that
influence success or failure during soft-
ware testing: production, infrastructure,
training, personnel, communications,
operations, maintenance, and environ-
ment [1].

Regarding the first factor, production,
according to software production expert
M.S. Phadke, faulty coding tends to be
regional and hence predictable [19].

Regional, as it is used here, refers to
either a section of the code or a physical
location where the code is generated. As
per Phadke’s observation, there will be
regions of computer code that are highly
correlated with deficiencies in the initial
stages of design and production (prior to
the first test). These regions should be
more closely observed in the first test for
the specific types of deficiencies identi-
fied during production. Any region with a
large number of deficiencies during the
first test would then be targeted for
emphasis in the next production cycle
and for extensive testing during the sec-
ond test. Comparing by region the defi-
ciencies exposed during the first test to
those exposed during the second test
would again target the regions that
should receive more emphasis in the fol-
lowing production cycle and extensive
testing during the third test, and so on,
iteratively encouraging the optimal identi-
fication of unexposed deficiencies.

Comparing this approach to IBM’s,
the triggers identify only the regions of
code with problems. They do not indicate
the relative significance of the difference
between the regions and do not track the
eight factors. In this approach, data about
the eight factors was collected during two
tests of a large-scale software program.
This enabled analysis of the deficiencies
exposed and each of the eight factors.
This analysis identified the regions of
code that were problematic, the differ-
ence between regions, and which of the
eight factors were significantly related to
the exposed deficiencies.

Methodology
The data for this study came from two
tests (TEST1 and FIELD) of the large-
scale software program Deliberate and
Crisis Action Planning and Execution
System (DCAPES), designed to serve an
information technology need of the U.S.
Air Force [20]. For TEST1, operator
information and the results of the testing
of 53 tasks within the first increment of
DCAPES were collected from five world-
wide locations during two weeks in June
of 2001. The 53 specific tasks were
organized into the following six cate-
gories: operations, logistics, information
analysis, reference file access, manpower
data management, and system adminis-
tration [20]. Fifty-two operators assessed
the system’s capabilities and performance
in 4,592 discrete actions in a simulated
operational environment. Data collected
in TEST1 included the overall recording
of the outcomes of the test, deficiency
documentation, operator information,

and operator satisfaction surveys.
The first increment of DCAPES was

then fielded in March 2002. FIELD, the
second data collection effort, involved
recording deficiencies that were found in
the normal operation of the first incre-
ment of DCAPES after it was fielded.
Normal operations consisted of an esti-
mated 225,000 discrete actions by
approximately 2,000 authorized opera-
tors in 16 worldwide locations over a 10-
month period. Data collected in FIELD
included deficiency documentation and
operator information.

Performance failures or deficiencies
were documented using the exact same
procedures and codes for both TEST1
and FIELD. Operators documented defi-
ciencies with standardized forms exten-
sively describing the problem and the cir-
cumstances leading to its exposure. While
documenting the problem, the operator
assigned a priority describing the impact
of the deficiency on the organization’s
mission on a five-point numeric scale. A
priority one deficiency described a cata-
strophic mission failure, while a priority
five described an easily circumvented
minor inconvenience.

After the operator assigned an initial
priority, a Deficiency Review Board
(DRB) convened to review the legitimacy
of the problem and the appropriateness
of the assigned priority. The DRB con-
sisted of representatives from the soft-
ware developer company, the operating
community, and an independent govern-
ment evaluator as chairman ensuring
impartial review. TEST1 and FIELD
both followed these same procedures,
utilizing identical definitions and DRB
members. This replication ensured com-
parable treatment of test and field defi-
ciencies. The DRB also rejected duplicate
deficiencies, ensuring each problem was
documented only once. After the DRB
assigned a final priority, the problem was
officially documented in another data-
base that consolidated and segregated
test and field deficiencies, making this
information readily available to author-
ized personnel.

A series of χ2 goodness-of-fit tests, p-
tests, and binary logistic regression equa-
tions were conducted on the data collect-
ed to answer the problem statement,
“Can the correlation of software test and field
data be used to guide testing to increase deficien-
cy exposure?” The analyses are organized
and discussed in three sections: system
functionality, organizational trends, and
operator data. System functionality refers
to the performance of the DCAPES sys-
tem. Organizational trends refer to how

organizations impact the performance of
the DCAPES system. Operator data
refers to how operators impact the per-
formance of the DCAPES system.

Findings
Regarding system functionality, this study
began with the assumption that coding
errors tend to be regional. One implica-
tion of this assumption is that defects are
interrelated and may be predictable.
Analysis of the results of the testing of
the 53 system tasks within the six func-
tional categories supports this assump-
tion. The data indicates that tasks and cat-
egories with high execution quantities had
more field deficiencies. These tasks and
categories were more complex, containing
a broader range of functions made possi-
ble through additional lines of code. Due
to this complexity, these areas were more
susceptible to errors. The binary logistic
regression results also indicate a signifi-
cant relationship between the execution
volume of complex code and incidence of
errors. Applying this finding, a test direc-
tor could increase the testing of regions
with high volume execution.

Another affirmation of the regionali-
ty of errors was evident in that regions of
code plagued by failures during the first
test exhibited additional defects in the
field test. The time and resource con-
straints placed on testing prohibit expo-
sure of every deficiency in any single
round of testing. As a result, it is not sur-
prising that defects remain undiscovered
even in areas well tested in previous iter-
ations. Again, a test director could alter
test activities to emphasize regions with
substantial failures in past tests.

An organization-wide trend that had
significant impact was the adequacy of
training provided to operators. The find-
ings indicate that the categories in which
operators had inadequate training had
higher field deficiency quantities.
Intuitively, this results from the inability
of operators to stringently test these cat-
egories in the first test. This study found
that DCAPES training problems were
more related to the categories of tasks
than the geographic location of the task
execution. This provides valuable infor-
mation because training courses are typi-
cally organized along both lines with cat-
egory specialists trained as a group at
each location.

To improve a test in progress before
its completion, the awareness that opera-
tors have inadequate training in specific
categories should be used to redirect test-
ing to emphasize the reported categories
using only well-trained operators.

However, in an incremental development
project, this feedback concerning cate-
gories in which operators are reporting
significant training problems could be
provided to instructors and the training
adjusted to prevent inadequate training
from negatively impacting later tests.

The operator data identified signifi-
cant factors to guide the testing process
and factors that are not as important as
conventional wisdom suggests. For
example, prevailing opinion is that defect
exposure detracts from test execution. A
variety of calculations revealed that the
expected negative relationship between
execution and deficiency submission did
not occur. Instead, the significant rela-
tionship in this regard was that operators
who submitted false deficiencies (false
deficiencies are those withdrawn by the
submitter or rejected by the DRB)
exposed significantly fewer legitimate
defects overall. This calls into question
the quality of testing accomplished by
these operators and suggests the partici-
pation of operators who submit false
deficiencies in past tests should be cur-
tailed in future tests.

Current conventional wisdom also
asserts that test planning should entail
the meticulous creation of a simulated
environment that closely approximates
the operational setting. The findings of
this study, however, indicate that some
facets of this environment may not be
necessary to simulate so meticulously.
For example, significant resources are
devoted to recruiting representative
operators; however, the findings here
were that field deficiency exposure rates
increase with operator skill level and sys-
tem experience. Using operators in the
testing process with great skill level and
system experience apparently would be a
more effective and efficient way to
expose deficiencies than ensuring that
operators representing the full available
range of skill levels participate in the test.

Finally, tasks with lower operator sat-
isfaction levels were found to contain
unexposed deficiencies. These operator
satisfaction results provide information
about system performance that can be
used to guide testing. Within the time
period of one test, operators often rotate
in and out. Using this to advantage, a test
director could steer subsequent testing
toward areas receiving lower marks on
satisfaction ratings of operators rotating
out. In a spiral development effort, test
directors could also schedule later tests
to emphasize areas receiving lower oper-
ator satisfaction ratings in previous itera-
tions.

20 CROSSTALK The Journal of Defense Software Engineering July 2005

Configuration Management and Test

Conclusion
The statistical analysis within this study
has specific application to the remaining
tests in the development of DCAPES and
the development of similar large-scale sys-
tems. Through publishing this article,
information about the approach suggest-
ed here will be incorporated into the body
of information about software testing.
Then, as the methods here are more wide-
ly employed, they will refine testing and
help improve end-product quality.

As mentioned earlier, the National
Institute of Standards and Technology
estimates software defects cost the United
States nearly $60 billion annually. The
Institute also estimates that practical
approaches to software development and
testing could reduce this figure by 37 per-
cent [2]. Essentially, $20 billion can be
saved each year through the implementa-
tion of relatively simple software produc-
tion models. The correlation model pro-
posed in this article is an initial attempt at
capturing a small percentage of these
funds. While not the most statistically ele-
gant method, it is a method that most pro-
fessionals in the work world will be able to
understand and, most importantly, use.
Public- and private-sector large-scale soft-
ware development projects may both real-
ize tremendous gains from a statistical
correlation model.

The data analysis referred to in this
article is available upon request.u

References
1. McGowen, D.J. “C4I Operational Test

and Evaluation in Support of
Evolutionary Acquisition Strategy.”
ITEA Journal of Test and Evaluation
21.2 (2000): 34-39.

2. RTI. “Planning Report 02-3: The
Economic Impacts of Inadequate
Infrastructure for Software Testing.”
Washington, D.C.: National Institute of
Standards and Technology, May 2002
<www.nist.gov/director/prog-ofc/
report 02-3.pdf>.

3. Maybury, M., A. King, and J. Brooks.
“Software Intensive System Acquisi-
tion – Best Practices.” 2003 Acqui-
sition Conference, 28-30 Jan. 2003,
Arlington, VA <www.sei.cmu.edu/
products/events/acquisition/2003
-presentations/maybury.pdf>.

4. Assi, S., and M. Thompson.
“Alternative Test and Evaluation
Strategies for Command and Control
Systems.” ITEA Journal of Test and
Evaluation 20.2 (1999): 21-25.

5. Axiotis, G. “Evolutionary Acquisition
and Operational Testing, Time for a

New Approach.” Evolution 99 (1999):
1-5.

6. Sliwa, C. “Users Warm Up to Agile
Programming.” Computerworld 18
Mar. 2002 <www.computerworld.
com>.

7. General Accounting Office. “Best
Practices: A More Constructive Test
Approach Is Key to Better Weapon
System Outcomes.” Washington: GAO,
July 2000.

8. Cast, M. “Military Links Developmen-
tal and Operational Testing to Meet
Technology Challenges of the 21st
Century.” Program Manager July-Aug.
2000: 16-18.

9. Zyroll, T., A. Johnson, and B. Connally.
“Government Testing Philosophy
Redefined for Theater Battle Manage-
ment Core Systems.” ITEA Journal of
Test and Evaluation 19.1: 25-47.

10. Whittmeyer, J. “Meet DoD’s Top
Advisor on Operational Test and
Evaluation.” Program Manager May-
June, 1996: 2-8.

11. Besal, R.E., and S.K. Whitehead.
“Operational Testing: Redefining
Industry Role.” National Defense
Magazine Sept. 2001 <www.national
defensemagazine.org/archives.htm>.

12. Bailey, M., and M. Spencer. “Engineer-
ing the Largest C4I Operational Test in
Naval History.” ITEA Journal of Test
and Evaluation 20.1 (1999): 26-33.

13. Graves, T. “Hierarchical Models for
Software Testing and Reliability
Modeling.” 2003 Quality and Produc-

tivity Research Conference, IBM T.J.
Watson Research Ctr., Yorktown
Heights, N.Y., May 21-23, 2003.

14. Thompson, M., and E. Montagne.
“Using Risk Assessments to Determine
the Scope of Operational Tests for
Software-Intensive System Incre-
ments.” ITEA Journal of Test and
Evaluation 19.1 (Jan. 1988): 42-47.

15. Arnold, A.G., and W.F. Kujawa. “Test
and Evaluation of Complex System of
Systems.” ITEA Journal of Test and
Evaluation 20.3 (Mar. 1999): 33-36.

16. O’Bryon, J.F. “Meet MASTER-
Modeling and Simulation Test and
Evaluation Reform. ITEA Journal of
Test and Evaluation 20.4 (Apr.1999).

17. Brown, S.O., and K.E. Murphy. “Air
War Over Bosnia: OT&E Impact on
USAF Systems Used Over Serbia.”
Kirtland Air Force Base, NM: Air Force
Operational and Test Evaluation
Center, 2000.

18. Bassin, K, and S. Biyani.. “Metrics to
Evaluate Vendor-Developed Software-
Based on Test Case Execution Results.”
IBM Systems Journal 41.1 (2002): 13-30
<www.research.ibm.com/journal>.

19. Phadke, M.S. “Planning Efficient
Software Tests.” CrossTalk Oct.
1997 <www.stsc.hill.af.mil/crosstalk/
1997/10/index.html>.

20. Harlow, C. “DCAPES Operational
Assessment Final Report.” Kirtland
Air Force Base, NM: Air Force Oper-
ational and Test Evaluation Center,
2001.

July 2005 www.stsc.hill.af.mil 21

A Correlated Strategic Guide for Software Testing

About the Authors

Christopher L. Harlow
currently attends The
George Washington
University Law School.
Previously, he was a test
manager for three years

at the Air Force Operational Test and
Evaluation Center in New Mexico
where he designed and executed world-
wide operational tests of The
Deliberate Crisis Action Planning and
Execution System. Harlow has a
Bachelor of Science in economics
from the U.S. Air Force Academy and a
Master of Public Administration from
the University of New Mexico.

The George Washington
University Law School
E-mail: charlow@law.gwu.edu

Santa Falcone, Ph.D.,
is an associate profes-
sor in the School of
Public Administration
at the University of
New Mexico and

teaches public budgeting and public
finance.

University of New Mexico
2085 Anderson School of
Management
Albuquerque, NM 87131
Phone: (505) 277-4934
Fax: (505) 277-7108
E-mail: falcone@unm.edu

Software Engineering Technology

All too frequently audit recommenda-
tions are received by software project

teams and immediately hung up on a dart-
board for target practice. One reason they
are not well received is because they are
misunderstood. Audit recommendations
are simply designed to be guidelines to
achieve reasonable control, not specific
instructions that hinder an organization’s
ability to be productive and efficient.

With the appropriate level of commu-
nication between auditors and project
teams, audit recommendations can actual-
ly be extremely helpful for organizations
to reduce the risk of excessive defects,
delayed releases, cost overruns, and unmet
customer requirements.

Unfortunately, poor communication
between auditors and project teams is one
of the main reasons that organizations are
not able to effectively reduce their systems-
based risk exposure. Frequently this poor
communication causes one of two scenar-
ios. The first is that project teams overstate
the effort necessary to become compliant
with audit recommendations, thinking that
what the auditors are asking is entirely
unfeasible. In the second scenario, project
teams underestimate what the auditors are
recommending because they missed the
intent of the recommendation.

This miscommunication between audi-
tors and software project teams can be
thought of as recommendation gap. This arti-
cle lists the most frequent scenarios of
recommendation gap in an effort to
shrink the gap. By analyzing the intent of
the audit recommendations as opposed to
their specific wording, much insight can
be gained to reduce the risk of a failed
project. Although this article is directed
toward software projects, the viewpoints
can apply to a variety of system initiatives.

Classic scenarios of overestimating the
effort necessary to comply with recom-
mendations are presented below; follow-
ing these are scenarios of underestimating
the effort necessary to comply with rec-
ommendations.

Classic Scenarios of
Overestimating Effort
Project Plan
A very common audit finding is the lack
of a project plan. Auditors recommend
developing a project plan (as opposed to
just a project schedule) for new software
projects that are important to an organiza-
tion (i.e., financially, politically, or strategi-
cally). The purpose of the project plan is
to communicate to others how the project
activities will be controlled.

Many project managers perceive proj-
ect plans as oversized documents that no
one has time to develop or read. On the
contrary, they cannot afford to go without
a project plan; the plan can communicate
necessary information to the project team
instead of project managers communicat-
ing the information multiple times or not
communicating the information at all,
thus creating chaos. It should also be
noted that an indirect benefit to creating
and maintaining a project plan is that it
forces project management to think about
critical topics otherwise not considered.

Auditors are not looking for the proj-
ect plan to meet a certain length or depth
requirement; they are just concerned that
pertinent components are addressed (see
Table 1 for potential components). For
instance, depending on the size of a proj-
ect it is conceivable that topics such as
stakeholder identification and interaction
can be addressed in a paragraph.

System Life-Cycle Methodology
Another very common audit recommen-
dation is for organizations to adopt and
implement a formal system life-cycle
methodology. Organizations tend to take
the extreme of this recommendation by
either adopting a robust yet unwieldy sys-
tem life-cycle methodology that virtually
no one is trained on, or ignoring the rec-
ommendation altogether, seeing it as a
mountainous task.

This recommendation can be addressed
with relative ease by a project team consid-
ering its strengths and weaknesses and
adopting a basic life-cycle methodology
that exploits their strengths and overcomes
their weaknesses. There are a number of
proven life-cycle methodologies that are
publicly available; creating one from
scratch is generally unnecessary. Widely
used methodologies include waterfall, rapid
prototyping, incremental build, multiple
build, spiral, fast-track, and hybrid.

Project teams should select a method-
ology that can be easily implemented and
will not require extensive training. This
leads to an area that most organizations
fall short on – training and implementing
the methodology. Auditors are not con-
cerned that a methodology that fills five
binders has been developed. Instead, they
want to see that a valid methodology
appropriate for the specific project team
has been adopted and implemented.

Change Management
Change management policies and proce-
dures do not need to handcuff an organi-
zation’s systems’ staff, but they should be
commensurate with the risks of the spe-
cific environment. Modifications to a mis-
sile control system present a higher risk
than modifications to a video library sys-
tem; therefore, change management poli-
cies and procedures must be comparative-
ly more structured. Auditors simply want
to see that a change management process
is carefully designed for the specific oper-
ational and technology environment as
well as being implemented entity-wide.

An important component of this

“But the Auditor Said We Need to ... ” Striking a Balance
Between Controls and Productivity

Greg Deller
Capgemini Government Solutions

This article discusses the common gap between audit-recommended controls and those typically implemented by software proj-
ect teams. The article lists commonly misunderstood audit recommendations and provides a clear explanation of what the
auditors are really seeking from software project teams.

22 CROSSTALK The Journal of Defense Software Engineering July 2005

Recommended Project Plan Components

System Life-Cycle Considerations Milestones
Technical and Management Tasks Data Management
Budgets and Schedules Risk Identification
Resource and Skill Requirements Stakeholder Identification and Interaction

Table 1: Recommended Project Plan Components

Table 1: Recommended Project Plan Components

July 2005 www.stsc.hill.af.mil 23

includes the organization’s ability to
ensure “consistency in the management
and control of software changes” [1]. This
begins with establishing a policy and pro-
cedure describing how program changes
are to be made. These policies and proce-
dures should incorporate a structured
process to ensure that system changes are
requested, tested, and approved prior to
implementation, as opposed to an infor-
mal approach (such as ad-hoc trou-
bleshooting).

While a structured process does add
new requirements, it can be implemented
without requiring a significant increase in
resources, if designed appropriately.

Increasingly, organizations are rec-
ognizing that effective change con-
trol management is a key to assur-
ing that the product delivered is
indeed the product intended and
expected. [1]

If the product is delivered as intended and
expected the first time, fewer resources
are needed in the long run to fix the prob-
lem.

Disaster Recovery
Disaster recovery considerations should
be addressed from the inception of a proj-
ect. Should the Internal Revenue Service
cut over to an Internet-based tax filing
system without considering high availabil-
ity? Should the Navy implement a new
fleet maintenance tracking system without
considering a back-up scheme? The
answers are obvious.

On the other end of the spectrum,
does a small construction company need to
consider disaster recovery for their Internet
access? They do if they are implementing a
new payroll system utilizing a third-party
payroll processor that can only receive pay-
roll submissions via a file transfer from a
specific Internet Protocol address.

All of these scenarios present a risk of
continued operations that should be dis-
cussed among the project team and stake-
holders prior to the implementation date.
However, if the topic is not discussed dur-
ing the early stages of the project, imple-
mentation decisions may be made about
the system that negatively affect disaster
recovery capabilities. Disaster scenarios
and contingencies should at least be dis-
cussed and documented among all key
personnel when developing a new system.
This can be as simple as brainstorming
about the risks, mitigating circumstances,
and contingencies during a team meeting
at key milestones during the project.

Audit requirements should not dictate

across the board that systems are fully
redundant and disaster recovery plans
meet the five-binder requirement. What
they do require is that disaster risks are
identified and the impact of the risks is
assessed. Based on the risk analysis and
business impact analysis, management can
then determine what level of risk they are
willing to accept versus the cost.
Reasonable contingencies should be iden-
tified and implemented to reduce the
overall risk exposure. Again, these plan-
ning exercises may be as simple as getting
the appropriate personnel in a room to
discuss and document the decisions.

Further, there is a common miscon-
ception within organizations regarding
who should be responsible for addressing
business continuity and disaster recovery.
The key is not who is responsible for it or
who manages the effort, but who provides

input to the disaster recovery planning
effort. Input to the disaster recovery
effort must come from all stakeholders
including management, end users, and sys-
tems personnel. It should be a coordinat-
ed effort where business and technical
issues are discussed.

Data Conversion
Auditors typically recommend a struc-
tured approach be taken with most com-
plex project tasks. Data conversion is no
exception. The recommendation gap in this
area is generally more prevalent for small-
and medium-sized projects than with large
projects. Large projects generally identify
a data conversion approach and perform
data conversion activities that support the
approach. These data conversion activities
can include development of the following
documentation:
• List of all of the legacy data that must

be cleansed and loaded into the new

system.
• Mapping diagrams for data from the

legacy system to the new system.
• Conversion plan, which includes the

approach (e.g., manual entry, file load,
transaction load, automated program,
etc.).

• Data conversion reconciliation and
balancing procedures.

• Error resolution for data conversion
errors.

• Post-migration review and approval
from an appropriate stakeholder.
Although these items take a significant

amount of effort to prepare for a large
project, they can be prepared for small-
and medium-sized projects with limited
resources by focusing on the intent of the
documents. The intent is to develop an
effective and controlled approach to data
conversion. An important element of a
controlled approach is that it be well for-
mulated and communicated to all
involved, thus the need for documentation
(e.g., plans, mapping diagrams, error reso-
lution, etc.).

Again, there is no requirement regard-
ing the length or depth of the data con-
version documentation, only that it
addresses the key decisions (e.g., conver-
sion method, categories of data convert-
ed) and documents the reconciliation
process so it can be re-performed.

End-User Testing
End-user testing can go a long way toward
developing a relationship with customers
and gaining their support. But primarily
end-user testing is designed to catch
defects by using a tester that may be more
familiar with the subject matter and pro-
vide a fresh set of eyes.

User acceptance testing identifies
defects before they get into pro-
duction and gives the user commu-
nity a chance to kick the tires on the
system before it goes live. [2]

Why wait until a system is already
implemented to learn that the menu names
do not meet user needs, or that a system
formula for a calculation is incorrect?

End-user testing can be as simple as
having a sample of end users identify their
key activities and execute them in the test
system, or by having end users review sys-
tem-generated reports for validation of
accuracy and effectiveness. The key to
end-user testing is user confirmation of
the accuracy and functionality of the sys-
tem. This can be easily accomplished by
working with the users to list the key activ-
ities that they perform (i.e., test items) and

“But the Auditor Said We Need to ... ” Striking a Balance Between Controls and Productivity

“Unfortunately, poor
communication between

auditors and project
teams is one of the
main reasons that

organizations are not
able to effectively reduce

their systems-based
risk exposure.”

request that they test the key activities in
the system for accuracy and effectiveness.

During the end users’ test process they
should document their validation of each
of the key processes listed and clearly doc-
ument any errors or problems. Not only
does the list help the users know what to
test, but it indirectly helps to ensure that
they perform each of the components of
the test. Auditors’ primary concern is that
end users perform key process testing and
confirm the accuracy and functionality
prior to implementing a system, not that
the end users test every intricate element
of a system.

Go-Live Approval
End-user management and project team
management must perform an exercise to
identify criteria that must be satisfied prior
to implementation of a change into the live
environment. They must then review com-
pliance with the criteria and collectively
approve a system’s readiness prior to imple-
mentation. However, this may be as simple
as gathering the appropriate people in a
meeting to gain their documented approval
that go-live criteria have been satisfied.

Auditors are not as concerned about
the details of the go-live review as they are
about the process of evaluation. This
includes how the go-live criteria were
identified and the process to review and
approve compliance with the go-live crite-
ria. Accountability and ownership for the
go-live decision can be provided by end-
user management and project team man-
agement signing the go-live criteria check-
list and maintaining it with the central
project files.

Classic Scenarios of
Underestimating Effort
The discussion will now switch to scenarios
where project teams frequently underesti-
mate the level of effort required to meet
audit recommendations. Again, the cause
of this recommendation gap is attributed
to miscommunication regarding the intent
of the auditors’ recommendations.

Application Security
Project teams have a tendency to be
focused on ensuring that the requested

system functionality is implemented with-
in, generally, a tight timeframe. Often, that
leaves application security as merely an
afterthought or a task that is quickly
addressed by a small team, not consisting
of appropriate personnel, based primarily
on assumptions of needed user access.

Instead of addressing security at the
tail-end of the project, auditors recom-
mend that security be addressed at each
phase of the project, including project ini-
tiation and planning. From a logical per-
spective, this entails appropriate personnel
identifying sensitive data and function
access, establishing roles (i.e., user profiles)
for users, and then assigning data and func-
tion access to the roles. From a physical
perspective, application security design
must be performed simultaneously and
integrated with the system design process
to help eliminate downstream conflicts.

An accounting-based example of this
conflict exists when a user needs access to
Journal Inquiry on a screen, but should be
prevented from accessing Journal Entry on
the same screen (assuming security is
restricted at the screen level). A possible
reason for this conflict is that system
designers did not consider security consid-
erations when they were designing the sys-
tem so it did not occur to them that the
two incompatible functions should be on
different screens.

Logical security specifications can be
documented in a security matrix (for exam-
ple, refer to Table 2). In a security matrix,
groupings of users that have the same secu-
rity requirements are formed into security
roles. Then specific functions in the appli-
cation are assigned to the security roles.
Depending on the implementation, the
security matrix can even be used to docu-
ment the mapping from the logical design
to the physical design if the function col-
umn is granular enough to match physical
application security (e.g., screen names).

Independent Migration
Although audit recommendations repeat-
edly suggest that all code changes be
migrated to the live (production) environ-
ment by an independent person, that alone
is not sufficient. The intent of the inde-
pendent migration is so that an independ-

ent person can review the change and
ensure that it has been through proper
testing, documentation, and review prior
to implementation. However, limited ben-
efit is gained by having an independent
person migrate the change to the live envi-
ronment if he or she does not perform a
review or provide oversight for the change.
This independent review applies to any
program changes to the live environment,
regardless of the source of the change
(e.g., development/test environment).

Varying levels of review can be per-
formed by this independent person, but
the goal is for the independent person to
ensure the appropriateness of the change.
As an example, the independent reviewer
could verify that a Change Control Board
has authorized the change, or the inde-
pendent reviewer could be responsible for
performing his or her own review and test
of the code. Then the independent
reviewer is responsible for raising the issue
through proper channels if the change is
not appropriate.

Risk Management Plan
Although risk management planning is
gaining attention with large projects, it is
still rarely addressed in small- or medium-
size projects. However, even small proj-
ects developed in the current economy
have management visibility that justifies
the need for risk management.

The first objective in a risk man-
agement plan is to prevent undesir-
able situations from occurring. The
second objective is to reduce any
negative consequences when some-
thing undesirable does occur. [3]

For example, an organization may
address the first objective by aggressively
compensating employees who are the sole
provider of a skill to prevent their depar-
ture. Then, they may address the second
objective by cross-training employees to
reduce the negative consequence if the
resource does leave the organization. Note
that disaster recovery planning meets the
second objective of risk management
because it aims to reduce any negative
consequences when something undesir-
able does occur.

As Dr. Richard Bechtold indicates, a
plan should be developed that addresses
how the project team does the following:

… intends to identify, evaluate, pri-
oritize, mitigate, and manage proj-
ect risks. Select the top five or 10
risks to be the primary focus of
your risk management activities

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering July 2005

Table 1: Recommended Project Plan Components

Security Role (User Profile)
Functions Clerk Accountant Supervisor Controller
Journal Entry (JE1)
Journal Inquiry (JI1)
Journal Post (JP1)
Journal Reporting (JR1)

Note: The screen name is listed in parentheses.

Table 2: Security Matrix

3
3

3

3
3

3

3
3

3
3

3

3
3

Table 2: Security Matrix

“But the Auditor Said We Need to ... ” Striking a Balance Between Controls and Productivity

July 2005 www.stsc.hill.af.mil 25

and describe each. Document the
probability and impact of each risk
and calculate the resulting risk
exposure. [3]

This traditionally has been a topic that
is addressed informally by project man-
agers that believe they can see problems
coming on the horizon and perceive that
their projects are small enough to have vis-
ibility to all of the risks. Instead, a proac-
tive approach to risk management is typi-
cally recommended by auditors even for
small- and medium-size projects. The des-
ignation of resources to perform risk man-
agement activities must be performed dur-
ing project planning to avoid the scenario
of risk management activities becoming a
drain on the project team’s resources.

Closing the Recommendation
Gap
This article has mentioned the recommen-
dation gap several times to convey the
prevalence of poor communication
between auditors and project teams
regarding audit recommendations. While
there is no doubt that both sides are
responsible for fostering open and honest
communication, the auditors are primarily
responsible for ensuring that recommen-
dations are clearly communicated and
there is no confusion about the intent of
the recommendations. The following list
provides actions that can be performed to
close the recommendation gap:
• Project teams can request to have daily

or weekly briefings on issues or audit
concerns that arise during the audit.
Also, the two parties should meet at
the end of an audit to verbally discuss
all recommendations prior to a report
being finalized.

• Auditors can provide the project teams
with examples and templates of docu-
ments that they recommend the proj-
ect teams develop.

• Auditors can brief line management
on the details of the recommendations
prior to briefing upper management
since the line managers will typically be
directly responsible for addressing the
recommendations.

• Project teams can request clarification
(verbal or written) on audit reports prior
to devising responses or action items.

• Auditors can provide the source for
their recommendation such as the
Software Engineering Institute’s Ca-
pability Maturity Model®, Project Man-
agement Institute standards, Control
Objectives for Information and Related
Technology Audit Guidelines, Federal

Information Processing Standards pub-
lications, American Institute of
Certified Public Accountants standards,
and Financial Accounting Standards
Board (or other regulators) standards.

Summary
There is a common gap between audit-
recommended controls and those typically
implemented by software project teams.
Often, that recommendation gap can be
attributed to miscommunication between
the auditors and those being audited.
Miscommunication results from the proj-
ect team either overestimating or underes-
timating the effort needed to comply with
audit recommendations. Extensive com-
munication between the auditors and proj-
ect teams is necessary to close the recom-
mendation gap. Experience shows that the
implementation of audit recommenda-
tions will reduce risk and can also lead to
improved efficiency and effectiveness.u

References
1. Vallabhaneni, S. Rao. Certified Infor-

mation Systems Auditor Examination
Textbook Vol. 1: Theory. 2nd ed. Los
Angeles, CA: SRV Professional Publi-
cations, 1996.

2. Mogyorodi, Gary E. “Let’s Play 20
Questions: Tell Me About Your
Organization’s Quality Assurance and
Testing.” CrossTalk. Mar 2003: 30.

3. Bechtold Ph.D., Richard. Essentials of
Software Project Management.
Vienna, VA: Management Concepts,
1999: 110.

About the Author

Greg Deller is employed
by Capgemini Govern-
ment Solutions. Pre-
viously, he was a manager
with KPMG’s Infor-
mation Risk Manage-

ment practice. Deller is a Certified
Information Systems Auditor with more
than eight years of systems-based risk
management and consulting experience.
He has advised over 110 clients on the
security and controls in their informa-
tion systems environment. Deller has a
Master of Science in information sys-
tems from George Mason University in
Fairfax, Va.

Phone: (703) 244-5202
Fax: (208) 723-1537
E-mail: dellerg@yahoo.com

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
MAR2004 c SW PROCESS IMPROVEMENT

APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUNE2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Open Forum

Configuration management (CM) acts
as a central nervous system in system

and software development. If you do not
have it, you definitely need it. When you
implement it, do it once and very, very
carefully. When done, you cannot imagine
a life before it.

Every company developing products
should consider CM. It is integral to
process improvement and the concept of
using maturity models to support process
improvement, which is becoming more
and more integrated in the industry. In the
Software Engineering Institute’s Capability
Maturity Model® (CMM®) IntegrationSM

(CMMI®), CM plays a prominent part as a
key process area at CMMI Level 2 in the
staged representation. In both the staged
and the continuous representation, CM is a
generic goal for all key processes.

Staged representation is similar to
CMM V.1.1 where each key process area is
assigned to one specific maturity level out
of the five defined (initial, managed,
defined, quantitatively managed, and opti-
mizing). In continuous representation,
each key process area can reach the six
defined capability levels (incomplete, per-
formed, managed, defined, quantitatively
managed, and optimizing).

CM is, however, not something that
most companies are comfortable using.
The author has participated in more than
50 assessments in Denmark over the last
eight years. In each assessment, a list of the
top five candidates for process improve-
ment was produced. The three most fre-
quently appearing processes follow:
1. Project Management (75 percent).
2. CM (55 percent).
3. Test (51 percent).
More than half the companies needed to
improve their practices for CM. This made
it the second most appearing process.

Introducing CM into a company is,
however, not an easy task. Not many con-

trolled experiments on process improve-
ment with the subject of CM exist. For
example, under the project Software
Improvement Case Studies Initiative
(SISSI)1 – The Business Benefits of Soft-
ware Best Practice,” which has been per-
formed for the European Software
Institute, only five out of 50 experiments
had CM as their subject [1, 2, 3, 4, 5]. Some
of the trends in the conclusions of these
reports follow:

• Introduction of CM is a great advan-
tage for the company.

• Management support is essential.
• It is important to perform pilot tests of

the CM processes before they are rolled
out at a greater scale.

• Introduction of CM is difficult.
When a company is facing the task of

improving its CM, it may seem like an
overwhelming task. Where do you start?
Where do you go? How do you get there?
Using CMMI for example, a company can
get an appraisal of the capability of their
CM process. But even without a formal
assessment, the definition of the CM Key
Process Area may be used as a guideline
for implementation and improvement of
CM in a company.

CM Benefits
CM brings facts and control to project

management. Now, what is that worth? It
is hard to say – not many have estimates of
the unforeseen problems that come from
lack of control and unknown facts.

The savings from a working CM sys-
tem may stem from preventing one or
more of the following problems (among
others):
• Work is based on the wrong basis.
• Errors once corrected reappear again.
• Unwanted functionality is introduced,

or functionality is forgotten.
• It is difficult or impossible to reestab-

lish a running product.
• It is difficult or impossible to make

changes in an existing system.
• It is difficult or impossible to revert to

an earlier version that works.
• It is difficult to establish stable deci-

sions because decisions are constantly
reversed.

CMMI Definition
The CMMI for Systems Engineering,
Software Engineering, Integrated Product
and Process Development, and Supplier
Sourcing V.1.1 states the following:

The purpose of CM is to establish
and maintain the integrity of work
products using configuration identi-
fication, configuration control, con-
figuration status accounting, and
configuration audits. [6]

In CMMI, a number of goals are defined
for each key process area and a number of
practices are defined for each goal (see Table
1 for CM goals and practices).

Getting Started
There are many ways to engage in intro-
ducing and improving CM in your organi-
zation. No way is definitely the way – each
company must find its own way. Getting
started on anything completely from
scratch is not very easy; on the other hand,
it is hardly ever necessary. Even if a com-
pany has the feeling that no CM is being
performed at all, that is very rarely the case.

Finding CM in CMMI
Anne Mette Jonassen Hass

DELTA

Configuration management (CM) acts as a central nervous system in system development, and is a prominent key process area
and generic practice in Capability Maturity Model® Integration (CMMI®) and other maturity models. As such, implement-
ing and improving CM in the company may seem like an overwhelming task. This article takes you through the requirements
in CMMI step by step and offers practical and ready-to-use advice on how to get started and how to get better in this inter-
esting and rewarding area.

26 CROSSTALK The Journal of Defense Software Engineering July 2005

“The success or failure
of a company introducing
CM may depend on the
people allocated to the
task.The person driving
the initiative must be

a fiery soul or
a true believer.”

SM CMM Integration is a service mark of Carnegie Mellon
University.

® CMMI is registered in the U.S. Patent and Trademark
Office.

July 2005 www.stsc.hill.af.mil 27

Employees may have knowledge and prac-
tical experience of CM gained from previ-
ous jobs or during their education.

Getting the Right People
People drive changes and improvements.
The success or failure of a company intro-
ducing CM may depend on the people allo-
cated to the task. The person driving the
initiative must be a fiery soul or a true believ-
er. Without a burning desire to see CM at
work in the company, the person in charge
is prone to give up long before success is
achieved. All companies have dedicated
and enthusiastic people who want to do as
good a job as possible.

Collecting Best Practices
It is a good idea for a company introducing
CM to try and create a map of the existing
knowledge on the subject within the com-
pany itself. Authorized assessments or
more informal interviews with employees
working on ongoing projects may be used.
It is well worth the effort to analyze the
information gained from these and use it to
collect existing detailed information about
practices and knowledge. Starting the CM
initiative based on existing practices will
enhance the chances of success significant-
ly. Best practices may also be collected
from external sources. A good place to
start the search is in the “Configuration
Management Yellow Pages” on the CM
Crossroads Web site at <www.cmcross
roads.com/yp>.

Focus
To get CM off the ground, it is important
to focus on the employees’ understanding
of CM and their capabilities to perform
CM as on the company’s need for control.
This should not in any way contradict the
organization’s interests; at the end of the
day, the company depends on the employ-
ees’ ability to carry out the CM plans.

Look Ahead
At the initial introduction of CM into a
company, it is important to use a stepwise
approach. Begin with a few steps, and then
introduce more advanced aspects in due
course. A stepwise approach includes the
picking of low-hanging fruit. Set up goals
obtainable within a short period of time –
two to three months at the most – and cel-
ebrate when the goals are reached.
However, even in a stepwise approach, it is
a good idea to have at least some idea of
where the long-term goal is.

The First Steps
The following is a suggestion on how to
start CM from virtually nothing.

Establish Baselines
The primary goal is to get control over the
source code and corresponding objects.
This may be done by first defining and
assigning CM responsibilities in the organ-
ization. Appoint at least one CM person
responsible as a frontrunner.

Next, define what types of objects to
place under CM. These may be individual
objects such as specifications, source code
modules, other files, etc., or composite
objects like subsystems, partial deliveries to
the customer, or entire systems. For all
these types of objects, a convention for
unique identification must be defined, and
who has the authority over the objects
(e.g., who can approve them) must be
defined.

Following this, identify what has
already been produced, if anything. The
found objects must be stored in a con-
trolled library with relevant information;
they become configuration items. A con-
figuration item is any intermediate working
product, product component, or product
that is placed under CM. Composite items
of what have already been produced must
also be defined, along with specifying how
they are composed.

Lastly, define the rules for making
releases of configuration items and to reg-
ister who has which releases.

Track and Control Changes
When developing and maintaining a prod-
uct, changes are inevitable. The purpose of
change control is to be fully in control of
all change requests and all implemented
changes; a formal change control must be
established for the items now under CM.

Life cycles for incidents and changes
must be defined. An incident is every (sig-
nificant) unplanned event observed (during
test), and requiring further investigation
according to British Standard 7925-1. The
initiation of change control is the occur-
rence of an incident. It may, for instance,
be a wrong formulation in a document, a
coding mistake found during a walk-
through, an enhancement request arising
from a new idea from the customer, or a
change required in the code because of the
upgrade to a new version of the middle-
ware supporting the system. All incidents
must be registered, and for this a template
must be produced.

A Change Control Board (CCB) is
responsible for the change control of each
individual configuration item, so at least
one CCB must be established. The CCB is
a group of people responsible for assess-
ing, and subsequently approving or reject-
ing proposed changes to configuration
items. A CCB must be formed according to the

CM Goals and Practices

SG 1 Establish Baselines
SP 1.1-1 Identify Configuration Items
SP 1.2-1 Establish a CM System
SP 1.3-1 Create or Release Baselines

SG 2 Track and Control Changes

SP 2.1-1 Track Changes
SP 2.2-1 Control Changes

SG 3 Establish Integrity
SP 3.1-1 Establish CM Records
SP 3.2-1 Perform Configuration Audits

GG 2 Institutionalize a Managed Process

GP 2.1 Establish an Organizational Policy
GP 2.2 Plan the Process
GP 2.3 Provide Resources
GP 2.4 Assign Responsibility
GP 2.5 Train People
GP 2.6 Manage Configurations
GP 2.7 Identify and Involve Relevant Stakeholders
GP 2.8 Monitor and Control the Process
GP 2.9 Objectively Evaluate Adherence
GP 2.10 Review Status with Higher-Level Management

Note: SG is specific goal for the CM. GG is general goal for all key process areas. SP is specific practice. GP is
general practice.

Phase Description

Creation of the incident
registration.

The incident is described in the registration.

Analysis of the incident
registration.

It is determined which configuration item(s) will be affec
by possible changes, and the change effort is estimated.

Rejection or
acceptance of the incident.

If the incident is accepted, a change request is created
for each of the affected configuration items.

The change request
initiates a new
configuration item.

A new configuration item is identified and created, and
the change is implemented. In the course of acceptance
and placement in storage of the new configuration
item, feedback is given to the CCB.

Closing of the change
request.

The change request can be closed when the change
has been implemented and accepted.

Closing of the incident
registration.

The incident registration can be closed when all the
the corresponding change requests are closed.

Table 1: CM Goals and Practices

Finding CM in CMMI

wanted level of formality. It may consist of the
author or producer of an item, a peer group, or a
number of managers. A project may have several
CCBs with different areas of responsibility.

When analyzing an incident, the CCB
must consider the cost of implementing
any changes compared to the cost of not
implementing these changes. The CCB
decides whether or not the incident should
cause one or more changes to configura-
tion item(s). Each change to be made
should be documented in a change request
issued by the CCB. Make sure all incident
registrations are handled by the CCB. Most
importantly do not accept that changes are imple-
mented based on any other input than a change
request from the CCB!

A change process is a miniature devel-
opment project in itself. Each phase should
be described in details stating the responsi-
bility and specific actions. The phases are
outlined in Table 2.

Quite often no independent change
requests are created. However, this is not a
very good idea, especially in the cases
where an incident causes changes in sever-
al configuration items.

It must be ensured that the CCB
approves all implemented changes. All new
changed configuration items must be identi-
fied and stored in the controlled library with
the corresponding information. The last
task in the incident life cycle is to provide
feedback on decisions to every stakeholder.

Establish Integrity
It is necessary to register data for configu-
ration items such as names, versions, and
status, and to store all incident registrations
and change requests. Information kept in
the CM system is a gold mine of metrics
for the project. Make sure to keep relevant
information available. Reports such as

release notes, item status lists, item history
lists, item composition lists, and trace
reports should be defined. Audits are not
discussed here as the responsibility for
these often lies in quality assurance in mod-
ern companies.

Good Enough Is Not Always Enough
A CM system as described can be a very
good beginning. It will, however, in most
cases not be sufficient for a project or a
company to get full profit from performing
CM. A project well begun is half done, and
even a minimal system provides a good
starting point for the expansion of CM to
a more comprehensive system in order for
the benefits to grow. It is, however, impor-
tant to keep in mind that the scope and the
degree of formality must never exceed
what is profitable for the company.

Institutionalize a Managed
Process
For a key process area to reach a specific
level in CMMI terms, the generic practices
need to be fulfilled as well as the specific
practices. The generic practices are dis-
cussed briefly below in view of CM.

Establish an Organizational Policy
An organizational policy is the responsibil-
ity of top management and defines the
organization’s philosophy towards CM. It
must be short and high-level and include a
definition of CM to be used as the basis for
the CM work in the organization, a descrip-
tion of the CM process to be used, ways of
evaluating the CM performance in the
organization, and the approach to CM
process improvement.

Plan the Process
Even if the CMMI did not promote plan-

ning, the starting point for good CM is in
planning. If you do not plan, you plan to
fail! The work with the plan deepens the
understanding of the task and provides the
basis for the actual performance of the
work to be undertaken.

All the CM activities to be performed
must be described in the CM plan for the
project. Note that the CM plan may be
included as a chapter in the overall project
plan if that is preferred. The CM plan does
not need to be an independent document,
but always make sure that it is easy to rec-
ognize, and understand the connections
between the CM activities and the other
activities in the project. And independent
of the size, do not forget to allow for the
time to plan the CM.

When planning CM, the purpose, suc-
cess criteria, and level of ambition must be
defined. The plan must be a living docu-
ment and be used – beware of write-only
information. Also, record what has con-
sciously been left out at the point of time
when writing the plan. Make sure that all
stakeholders, including employees on the
project team, are familiar with the plan and
willing to adhere to it.

A template is a great help. In many
companies, templates for plans in general
and even specifically for CM plans exist.
Use them! A CM plan may be structured in
the following way:
1. Introduction

1.1 Purpose of the Plan
1.2 Scope of the CM Task
1.3 Vocabulary
1.4 References

2. Management and Relations to the
Environment
2.1 Organization

Specify how the overall organiza-
tion of CM is formed, and how this
fits into the rest of the project
organization. Describe which CM
roles are to be filled.

2.2 Responsibilities
Define the following clearly and
unambiguously:
• Who is responsible for per-

forming which CM activity?
• Who is responsible for approval

of objects prior to placement
under CM?

2.3 Interface Control
Define how the interfaces to exter-
nal objects (software, hardware,
etc.) are handled with regard to CM.

2.4 Subcontractor Management
Define how new versions are to be
tested for approval, who is doing
this, and how the deliveries from
the subcontractor(s) are introduced
into the project in a controlled way.

28 CROSSTALK The Journal of Defense Software Engineering July 2005

Open Forum

CM Goals and Practices

SG 1 Establish Baselines
SP 1.1-1 Identify Configuration Items
SP 1.2-1 Establish a CM System
SP 1.3-1 Create or Release Baselines

SG 2 Track and Control Changes

SP 2.1-1 Track Changes
SP 2.2-1 Control Changes

SG 3 Establish Integrity
SP 3.1-1 Establish CM Records
SP 3.2-1 Perform Configuration Audits

GG 2 Institutionalize a Managed Process

GP 2.1 Establish an Organizational Policy
GP 2.2 Plan the Process
GP 2.3 Provide Resources
GP 2.4 Assign Responsibility
GP 2.5 Train People
GP 2.6 Manage Configurations
GP 2.7 Identify and Involve Relevant Stakeholders
GP 2.8 Monitor and Control the Process
GP 2.9 Objectively Evaluate Adherence
GP 2.10 Review Status with Higher-Level Management

Note: SG is specific goal for the CM. GG is general goal for all key process areas. SP is specific practice. GP is
general practice.

Phase Description

Creation of the incident
registration.

The incident is described in the registration.

Analysis of the incident
registration.

It is determined which configuration item(s) will be affected
by possible changes, and the change effort is estimated.

Rejection or
acceptance of the incident.

If the incident is accepted, a change request is created
for each of the affected configuration items.

The change request
initiates a new
configuration item.

A new configuration item is identified and created, and
the change is implemented. In the course of acceptance
and placement in storage of the new configuration
item, feedback is given to the CCB.

Closing of the change
request.

The change request can be closed when the change
has been implemented and accepted.

Closing of the incident
registration.

The incident registration can be closed when all the
the corresponding change requests are closed.

Table 2: Change Control Phases

Finding CM in CMMI

July 2005 www.stsc.hill.af.mil 29

2.5 Relevant Standards
Describe which guidelines and poli-
cies the concrete project adheres to.

3. Activities
3.1 Identification

Describe and plan the activities
concerning naming conventions for
configuration items and the rest of
the CM data (meta data). At the
time of the planning, some of this
information is typically yet un-
known, e.g., module names. In this
case, it must be described how and
when this missing information will
be provided. This section may
describe how the information is
stored. Detailed techniques may be
placed in an appendix.

3.2 Storage and Release
Describe the handling of the con-
trolled library, i.e., how and when
the library is built and deployed, and
how information is collected.
Consider how long the various
types of CM information should be
kept. Finally, it may be described
how necessary backup of the
libraries and other information is
performed. This is, strictly speaking,
not a CM activity, but it is certainly
in the interest of CM to ensure that
backups are taken, kept in a safe
place, and can restore correctly.

3.3 Change Control
This is possibly the section most
important to get in place so that an
appropriate balance between for-
malism and flexibility is reached.
Define who has the authority to
request changes to a configuration
item, i.e., who are members of the
CCBs for the various object types.
A CCB may delegate the authority
to individuals or other roles; this
should be planned and document-
ed. Define how incident registra-
tions and change requests for vari-
ous types of objects, e.g., documen-
tation, code, support software and
tools, are to be handled, that is,
defining the life cycles for incidents
and changes. When these proce-
dures are established, it must be
ensured that events and changes can
be handled fast enough so that CM
is not perceived as an unnecessary
bottleneck in stressed situations
such as important deliveries to cus-
tomers.

3.4 Status Reporting
Great benefits are to be gained
from performing CM; valuable
information is easier to find and
use. Considerations regarding status

reporting provide significant input
about which data should be regis-
tered and for how long the infor-
mation should be kept. Use this sec-
tion to define how status informa-
tion about the configuration items
is collected, treated, and reported
on. Also define periodic reports and
how ad-hoc or dynamic queries
should be handled.

4. Schedule
4.1 Tasks

List the detailed tasks here. Make a
special effort not to forget anything
– avoid invisible work, i.e., work that
the staff has to perform but which
is not covered in the plan and the
schedule. Also determine and plan
required training. Document as far
as possible the actual people who
will be performing the related tasks.
The interfaces or connections to the
overall project plan should be stated.

4.2 Milestones
CM has a number of milestones,
e.g., the CM system is ready for use
for the next activity in the project,
the CCB(s) is (are) established,
deliveries of subsystem and sys-
tems, and product release. List the
milestones and state in which phas-
es there is a need for which roles
and resources, preferably with a ref-
erence to the overall project plan.

4.3 Diagrams and Charts
Support the planning descriptions
with diagrams and charts. Follow up
on the schedules, i.e., clearly mark
on diagrams and charts where the
project is, and frequently re-plan so
the plan reflects reality.

5. Tools, Techniques, and Methods
Depending on the capability level of
the organization, this chapter may be
the easiest or the hardest part of the
plan to write. If there is no central
place to get help, like an organization-
wide quality system, and the descrip-
tions in this chapter are to be useful at
all, the chapter will be hard to write,
possibly fairly big, and it may take a
long time. If, on the other hand, gen-
eral processes exist, simple references
and a few descriptions of tailoring may
be sufficient. In any case, do not
underestimate the importance of this
information, and the work involved in
providing it.

Provide Resources,Assign
Responsibility,Train People
The provision of resources, assignment of
responsibility, and training of people are
parts of the planning activity. The plan
must reflect the actual recourses available
for the tasks.

Manage Configurations
This means that products from the CM
process must be placed under CM. It is
appropriate to place the CM plan under
CM, so it should adhere to the general rules
of unique identification of objects and be
stored in a controlled library, as well as hav-
ing all changes be controlled in the speci-
fied way.

Identify and Involve Relevant
Stakeholders
Almost everybody involved in the specifi-
cation, development, usage, and mainte-
nance of a system is a stakeholder in CM.

Processes Needed for CM as Defined By CMMI

For Establishing Baselines:
• Convention(s) for unique identification.
• Convention(s) for identification of single items and composite items.
• Procedure(s) for registration of information about each configuration item.
• Procedure(s) for placement in storage and related update of information.
• Procedure(s) for release of items.
• Template(s) for item approval registration.
• Template(s) for release request.

For Tracking and Controlling Changes:
• Convention(s) for formation of different types of CCBs.
• Definition of responsibility for each type of CCB.
• Description of the change control process.
• Procedures forming the life cycles for incidents and changes.
• Template(s) for incident registration.
• Template(s) for change request.

For Establishing Integrity:
• Procedure(s) for production of available reports.
• Procedure(s) for ad-hoc extracts of information.
• Procedure for audit.
• Templates for the reports that the CM system is expected to produce.

Table 3: Processes Needed for CM as Defined By CMMI

Make a list and make it comprehensive –
remember everybody.

Monitor and Control the
Process
To be able to monitor and control process-
es, they must be understood and defined.
The processes needed for CM as defined
by CMMI in terms of procedures, conven-
tions, and templates are listed in Table 3.

The fact that CM is performed during
the entire lifetime of a product, for a num-
ber of different types of objects, and under
various circumstances, poses specific
requirements on the process descriptions
for CM. It may be necessary to produce
more variants of some of the processes,
depending on the types of configuration
items to handle, and/or the degree of for-
malism required. Types of configuration
items, to mention a few, may be require-
ment specifications, source code, and plans.

Metrics for Controlling CM
Performance
Tom Gilb said in “Principles of Software
Engineering Management,” that everything
can be made measurable in a way that is
better than not measuring at all [7].
Measurements may show new aspects of
things you thought you knew everything
about.

The following are suggestions for met-
rics that may be used for analyzing how
CM is performed in a company. The CM
processes are in focus here, not other
processes and not the product. The list is
by no means exhaustive.
• Number of registrations of configura-

tion items in the CM system.
• Time interval in which the registrations

have taken place.
• Time used for each individual registra-

tion.
• Incidents in connection with registra-

tions.
• Incident rate for registrations, e.g., num-

ber of erroneous registrations per 100.
• Average time for registration.
Some of the metrics may be defined by
configuration item type. Identical metrics
may be defined for the following:
• Placement in storage.
• Releases.
• Handling of incident registrations.
• Handling of change requests.
• Completions of milestones defined in

the CM plan.
Metrics may also be defined to include
costs such as the cost of the activities.

There is no reason for collecting meas-
urements if no one is going to analyze
them or act according to the analysis

results. Measurements must be collected
over time for the balance point and the
variation to be calculated, for example.

Process control is to find reasons for
variations from the normal. Control over
processes is gained by constantly analyzing
new measurements in relation to the
expected values, so processes that start to
behave in an unexpected way can be identi-
fied. The reason for the unexpected behav-
ior must be investigated and possible irreg-
ularities identified.

An unexpected behavior may be seen
by a measurement that suddenly lies far
outside the normal variation. This could be
to either the positive or negative side. An
example might be the handling time for an
incident that is suddenly far faster than
normal – is this because the CCB did not
do their work properly, is it an incident that
they have handled a lot of times before, or
is there a totally different reason?

Process improvement is to change the
reasons why something is considered nor-
mal. In conducting process improvement,
you may ask yourself questions like the fol-
lowing:
• Why is the balance point where it is?
• How may the balance point be moved?
• Why does the variation have the size it

has?
• How may the variation be decreased?

A balance point may be the average time
it takes for an incident registration of a cer-
tain type to be handled. It may be worth-
while finding out if there are bottlenecks in
the handling process that might be eliminat-
ed to decrease the average handling time.

Objectively Evaluate
Adherence and Review Status
With Upper Management
These practices are the responsibility of
quality assurance and management and will
not be discussed here.

Good Luck With CM
CM is not easy! If you think it is, you will
be unable to solve the CM task in a profes-
sional way. CM is not difficult! All you have
to do is to do it; if you understand the dis-
cipline, it is much easier to specify and plan
the task so that it fulfills its purpose and
becomes manageable.u

References
1. Del Duca, Gianfranco. “Introduction

of CM: Gaining a Competitive Edge.”
<www.esi.es/VASIE/Reports/All/241
51/14.pdf>.

2. Soro, Roberto. “Applying GQM to
Assess CM Practice for Better
Interbank Services.” <www.esi.es/

VASIE/ Reports/All/24151/sia.pdf>.
3. Garella, Alberto, and Giuseppina Tallo.

“Configuration and Change Manage-
ment to Rising Quality of Service.”
<www.esi.es/VASIE/Reports/All/
24151/istiserv.pdf>.

4. Vidvei, Tor. “Introduction of a CM in
Very Small Organizations.” <www.esi.
es/VASIE/Repor ts/Al l/24151/
40.pdf>.

5. Roald, Helge M. “Introduction of a
Common CM Framework.” <www.esi.
es/VASIE/Repor ts/Al l/24151/
52.pdf>.

6. CMMI Product Team. Capability Ma-
turity Model® Integration (CMMI SM),
V.1.1. Pittsburgh, PA: Software Engi-
neering Institute, Mar. 2002 <www.sei.
cmu.edu/cmmi/models/model-com
ponents-word.html>.

7. Gilb, Tom. Principles of Software
Engineering Management. Addison-
Wesley, 1988.

Note
1. A description of the SISSI project,

“Process Improvement Experiment
Final Report,” is at <www.esi.es/
en/Projects/VASIE/Reports/All/213
79/Report/21379.pdf>.

30 CROSSTALK The Journal of Defense Software Engineering July 2005

Open Forum

About the Author

Anne Mette Jonassen
Hass, Mc.Sc.C.E., has
been a consultant for
DELTA since 1995,
where she is now partner.
She has 25 years experi-

ence in information technology (IT) and
has performed more than 40 assess-
ments. Hass has an Information Systems
Examinations Board certificate in
Software Testing Foundation and
Practitioner, and is a certified BOOT-
STRAP V.3.0 and Capability Maturity
Model® Integration assessor. She is
author of “CM Principles and Practice”
and “Requirements Development and
Management,” and developed “Process
Contest,” a game that teaches IT con-
cepts in a relaxed and entertaining way.

DELTA
Venlighedsvej 4
2970 Hoersholm
Denmark
Phone: +45 72 19 40 00
Direct: +45 72 19 44 23
Fax: +45 72 19 40 01
E-mail: amj@delta.dk

BACKTALK

July 2005 www.stsc.hill.af.mil 31

Infrastructure. It’s easy to ignore, it’s often buried, and can tend
to be dirty. I learned about infrastructure firsthand while in

college. I paid for my dabbling in the dark arts of electronics with
a great job on the maintenance crew for a large downtown shop-
ping mall and high-rise. This place was packed with infrastruc-
ture. My most memorable lesson came when
old Ben had me perched on the top of a really
tall ladder armed with an overweight pipe
wrench. Ben claimed to have personally
known Gen. Patton and served him well in his
engineering corps. He shared some great sto-
ries on the general’s tactical use of engineer-
ing, but that’s another story. In this instance,
Ben was standing below – and some dis-
tance away from – my perch, directing his
cadet plumber.

It was a bit smelly, but I was doing
fine on my task when my outlook
changed dramatically – through the
open pipe I heard a toilet flush! I was
never very athletic, but now I had a
vision that made me cover 15 feet
before Ben could get a word out. Ben
was not amused at my desertion, and
sent me back up the ladder. Once I real-
ized my fears of a gushing pipe were
unfounded, Ben could see that it was
time I learned about infrastructure.
“Tony,” he said, “you need to know the two
rules of plumbing, the first rule being that
water flows downhill.” I quickly per-
ceived that this first rule was the only
reason I was still smiling.

“So what’s the second rule?” I asked.
“Don’t bite your fingernails!” he said.
Truth be known, it was Ben and his troops that

kept the folks upstairs from biting their nails. The
whole city block was cooled, heated, lubricated, lighted, and gen-
erally functioned because Ben and I were at work. I left Ben’s
tutelage to begin my career in software and before long found
that even software had something akin to infrastructure. The
analogy isn’t perfect, but just like the undergirding of a building,
my initial dabbling in code exposed the underpinnings of the
software world, and included in that foundation I found config-
uration management (CM) and test.

Now, lest the hate mail flow, my reference of CM, test, and
sewage in the same article is simply a matter of artistic con-
trivance to show that these disciplines – like infrastructure in the
physical world – hold up the software universe. For example, I
heard of one company whose CM was so neglected that the
developers literally lost the baseline for their software. Imagine
that! They climbed out of this hole by begging the productions
guys for a copy of their own software – that’s like Julia Child call-
ing Random House for her macaroni and cheese recipe. Talk
about missing the essentials!

I’ve never witnessed such gyrations firsthand; in fact, I
became an early proselyte to the ways of CM when it saved my
skin. I was merrily cranking code on one of my first assignments

when our team lead announced an inquisition; it seemed our lat-
est additions to our product had rendered it, well, useless. As the
least experienced on the team, I was the guilty one. But we all
marched out to our integration stand where I witnessed the mar-
vel of CM as the build was reconstructed change by change.

Everybody wanted to get this over with so,
hey, start with the new guy first. My cohorts
were warming up a nice selection of ridicule
when, horrors – for them anyway – the thing

still worked with my code in it. This
meant, of course, that someone else

was to blame and the cold hand of
CM was about to expose him.
Which it did, and I don’t recall my
team lead ever convening another
such inquisition.

All right, so exposing the
boss was a bit messy, but it would

have been a real battle without the
structure of CM. Being a test engineer
often put me in similarly tight spots, but
by then I had learned to enjoy it. We
would work endless hours in the lab and
if we ever showed up in the office, it

meant trouble. You could feel the collec-
tive groan as we strode in and toyed with our
teammates. Yes, indeed, personal pride is

rarely measured in the cost of zero defects. Don’t get
me wrong, this was gentle professional ribbing – the

same sort of professionalism that produced the self-
effacing Air Force Acronym Reference Compendi-
um, better known in testing circles as the AFARC.

It might have been a bit rough at times, but the
customer was the unknowing beneficiary. Working the

infrastructure of software may feel sometimes like
working the nameless unseen systems in Ben’s building,
but that never seemed to bother Ben. He knew.

— Tony Henderson
Software Technology Support Center

tony.henderson@hill.af.mil

Software Plumbing

Can You BackTalk?

Here is your chance to make your point, even if it is a bit
tongue-in-cheek, without your boss censoring your writing. In
addition to accepting articles that relate to software engineer-
ing for publication in CrossTalk, we also accept articles
for the BackTalk column. BackTalk articles should pro-
vide a concise, clever, humorous, and insightful perspective
on the software engineering profession or industry or a por-
tion of it. Your BackTalk article should be entertaining and
clever or original in concept, design, or delivery. The length
should not exceed 750 words.

For a complete author’s packet detailing how to submit
your BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

Illustration by Keith Gregersen.

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Configuration Management and Test
	Implementing Configuration Managementfor Software Testing Projects©
	Configuration Management Fundamentals
	A Correlated Strategic Guide for Software Testing

	Software Engineering Technology
	“But the Auditor Said We Need to ... ” Striking a BalanceBetween Controls and Productivity

	Open Forum
	Finding CM in CMMI

	From the Sponsor
	From the Publisher
	Coming Events
	Call For Articles
	Web Sites
	SSTC 2005 Conference Highlights
	BackTalk
	Back Cover

